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ABSTRACT
Analog/mixed-signal circuit design is one of the most complex and
time-consuming stages in the whole chip design process. Due to
various process, voltage, and temperature (PVT) variations from
chip manufacturing, analog circuits inevitably suffer from perfor-
mance degradation. Although there has been plenty of work on
automating analog circuit design under the nominal condition, lim-
ited research has been done on exploring robust designs under the
real and unpredictable silicon variations. Automatic analog design
against variations requires prohibitive computation and time costs.
To address the challenge, we present RobustAnalog, a robust cir-
cuit design framework that involves the variation information in
the optimization process. Specifically, circuit optimizations under
different variations are considered as a set of tasks. Similarities
among tasks are leveraged and competitions are alleviated to real-
ize a sample-efficient multi-task training. Moreover, RobustAnalog
prunes the task space according to the current performance in each
iteration, leading to a further simulation cost reduction. In this way,
RobustAnalog can rapidly produce a set of circuit parameters that
satisfies diverse constraints (e.g. gain, bandwidth, noise...) across
variations. We compare RobustAnalog with Bayesian optimization,
Evolutionary algorithm, and Deep Deterministic Policy Gradient
(DDPG) and demonstrate that RobustAnalog can significantly re-
duce required the optimization time by 14×-30×. Therefore, our
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study provides a feasible method to handle various real silicon
conditions.
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1 INTRODUCTION
From digital to analog, from quantum to classical circuits, robust-
ness is always a critical pursuit [7, 11, 12, 17, 24–26]. Among them,
analog circuit design is a paramount but extremely challenging task.
It requires a huge amount of human efforts and lacks effective au-
tomations. Due to numerous chip manufacturing variations, analog
circuits suffer from non-trivial performance degradation. Address-
ing such variation issues is considerably challenging. Hence, an
effective variation-aware circuit design methodology is in high de-
mand. Traditional solutions to address such circuit variation issues
primarily rely on laborious human expert involvement. Experts
manually design the circuit based on their expertise and the feedback
from a large number of circuit simulations and iterate the process
until it passes all variation tests. However, the burdensome analysis
and slow simulations make the manual design process considerably
time-consuming.
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Automatic sizing has achieved great advancement with machine
learning incorporated [6, 14, 19, 27, 28]. However, recent learning-
based methods merely focus on the optimization under the nominal
condition without variations. The variation-aware optimization is
challenging in two aspects. First, the simulation cost is prohibitively
expensive in order to get accurate variation effects under many test
cases. Second, different variation conditions might conflict with
each other which significantly complicates the circuit optimization
problem. It will cost the solver much more time to find a feasible
solution that meets all performance constraints.

To address the above challenges, we present RobustAnalog, an
efficient variation-aware optimization framework for automatic
analog circuit design. RobustAnalog largely reduces the simulation
cost to design a robust analog circuit against variations. Here the
variation-aware optimization is formulated as a multi-task rein-
forcement learning (RL) problem, where design for each variation
condition is considered as one task. RobustAnalog includes two
stages. At the first stage, we select a representative subset of tasks
as the training set. Specifically, we group the tasks using clustering
algorithm and choose one task per group to form the training task
set based on their relative performance to the target performance.
At the second stage, we leverage multi-task deep deterministic pol-
icy gradient (DDPG) [13] to train our RL agent with the selected
tasks. During training, the critic model learns to predict values of
state-action pair from each task and guides the actor to generate a
better policy. To alleviate conflicting multi-task gradients, we apply
PCGrad [30] to optimize actor and critic models.

RobustAnalog tackles the problem of variation-aware automatic
analog circuit sizing from several different perspectives. The core
contributions of this work are as follows,

• We propose an automated optimization framework for variation-
aware analog circuit design via multi-task reinforcement learning
and adaptive task space pruning.
• An efficient training with variations is achieved by multi-task
RL. The different PVT corners are formulated as multiple tasks.
Sampling efficiency is largely improved by leveraging the correla-
tions among similar tasks and mitigating the competition among
conflicting tasks.
• An effective task pruning technique reduces the number of
training tasks. The agent is trained with a series of small subset
of tasks. Inheriting the trained weights from last cycle, our agent
can be improved incrementally and achieve full tasks eventually.
The number of queries into the full task set is minimized, leading
to a significant simulation cost reduction.
• Extensive experimental results demonstrate that, on real-world
circuit design benchmarks, ourmethod outperforms Evolutionary
strategy (ES), Bayesian optimization (BO), and DDPG methods
with 14×-30× simulation cost reduction.

2 PRELIMINARIES
PVT Variation and Corners – The major part of variations is
PVT variation. PVT variation usually refers to a combination of
global process variation (P), power supply (V), and temperature
(T) variations. Process variations happen during chip manufactur-
ing, resulting in different transistor characteristics. There are five
transistor models to cover the process variation {TT, SS, FF, SF, FS}.

To avoid circuit failures due to uncontrollable PVT variations, we
model all these variations by a set of PVT corners. A robust circuit
should maintain desired performances in all of the pre-set PVT
corners.
Automatic Analog Sizing – Automatic analog sizing techniques
are attracting more and more research interests these years. Black-
box problem optimization methods [6, 14, 21] were widely adopted
in the past, showing different sample efficiencies and optimalities.
However, such methods cannot transfer knowledge from one condi-
tion to another. The lack of tranferalibity across different conditions
prevents them from addressing the variation issue at an affordable
cost. Recently, learning-based methods have been extensively ap-
plied to circuit sizing problems. Deep neural networks (DNN) are
not only better circuit function approximators, but also enable
transfer-learning across different design conditions, including dif-
ferent technologies and pre/post-layout design stage [19, 27, 31]. In
this work, we utilize multi-task RL with DNNs to efficiently address
the variation problem.
Multi-Task RL – Deep reinforcement learning (DRL) is an emerg-
ing subfield of RL that can scale RL algorithms to complex and
rich environments. Multi-task RL focuses on enabling the single
agent to solve multiple related problems, either simultaneously or
sequentially [23]. Learning multiple related tasks together should
facilitate the learning of each individual task [2, 5]. However, it has
also been found that training on multiple tasks can negatively affect
performance on each task. Different kinds of techniques are pro-
posed to solve this issue including new architectures [10], auxiliary
tasks [11], and new optimization schemes [30]. Besides, choosing
which task or tasks to train on at each time step is also important.
The task scheduling [20] is also discussed. The idea behind it is to
assign task scheduling probabilities based on relative performance
to a target level. Optimized training task selections can significantly
improve model performance [3]. We explored both the optimal task
selection and multi-task training. They are integrated together into
the framework to boost the sampling efficiency.

3 PROPOSED PVT VARIATION-AWARE
CIRCUIT SIZING

3.1 Problem Definition
Given a fixed circuit topology, we search for a circuit sizing vec-
tor whose performance can satisfy the constraints (design targets)
across all variations. Then the problem can be formulated as a
feasibility problem [1] under different conditions.

minimize 0

subject to 𝐹𝑖 (𝑋 |𝑇𝑗 ) −𝐶𝑖 < 0, 𝑖 = 1, . . . ,𝑚; 𝑗 = 1, . . . , 𝑘
(1)

where

𝑋 ∈ 𝐷

𝑋 = {𝑋1, 𝑋2, ..., 𝑋𝑛}
𝐷 = {𝐷1, 𝐷2, ..., 𝐷𝑛}
𝐶 = {𝐶1,𝐶2, ...,𝐶𝑚}
𝑇 = {𝑇1,𝑇2, ...,𝑇𝑘 }

𝑋 , the sizing vector, is an 𝑛-dimensional variable which corre-
sponding to 𝑛 circuit sizing parameters. 𝐷 is the domain for 𝑋 .
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Figure 1: RobustAnalog Overview. (1) A pruned task subset is generated from the full task set (2) Multi-task RL agent is trained on task subset
(3) Training continues until the produced sizing can achieve training tasks. Then the sizing is evaluated on the full set. If it passes all the tasks,
RobustAnalog returns the result.

For example, 𝐷1 is [0, 1] which means the design space of 𝑋1 is
[0, 1]. 𝑇 is the set of 𝑘 pre-defined PVT corners to cover possible
variations in the real world. 𝐶 is the constraint set for all circuit
metrics. Because we have𝑚 metrics, the number of constraints is
also𝑚. 𝐹𝑖 (𝑋 |𝑇𝑗 ) is the 𝑖𝑡ℎ performance metric of circuit under the
𝑗𝑡ℎ corner. 𝐹𝑖 is a non-linear mapping between𝑋 and the 𝑖𝑡ℎ metric
in the performance. 𝑋 is the input, and 𝑇 is the parameter. We rely
on the circuit simulator to provide this mapping. Therefore, our
goal is to find an 𝑋 that can satisfy any constraints in 𝐶 under any
corner task in 𝑇 . It is worth noting that choosing which tasks to
optimize is also non-trivial. Spending simulations on each task is
wasteful and provides minimal additional information since the
correlation among tasks is ignored. A more interesting way is to
conduct the task selection and multi-task training jointly.

3.2 Framework Overview
An overview of the proposed framework is shown in Figure 1. We
consider satisfying constraints under one PVT corner as a single
task. In each iteration, (1) RobustAnalog selects a new task subset
from all PVT corner tasks. For the first iteration, a pre-defined
nominal corner will be selected as the first task; (2) The RL agent
generates actions and passes them to each environment in the task
subset; (3) Environments denormalize actions ([-1, 1] range) to
actual circuit sizings and refines them. The sizings will be truncated
according to minimum precision, lower and upper bounds of the
technology node if necessary; (4)Simulate the circuit (5) Agent gets
the rewards from corner-specific environments. Optimizations are
performed on the actor and critic networks with PCGrad technique.

noise limited corners speed limited corners

Figure 2: Visualization of corner task clustering and selection for
strongARM Latch. k-means decision boundary is shown, dividing
corners into two kinds: noise-limited corners (blue) and speed-
limited corners (brown). The corner with the worst performance in
each cluster is chosen as one of the training tasks.

(6) If all tasks in the subset are passed during the agent evaluation,
the sizing solution will be tested on the full task set. If it passes all
tasks, the loop terminates. Otherwise back to (1). In the meantime,
actor-critic model weights and replay buffers are saved for the agent
to inherit in the next iteration.

3.3 Multi-Task RL training
Multi-task RL is a training paradigm in which the agents are trained
with samples from multiple tasks simultaneously. Shared represen-
tations are learnt from a collection of related tasks. These shared
representations increase sample efficiency and can potentially yield
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strongARM Latch Folded-Cascode OTATwo-stage OTA

Figure 3: Three analog/mixed-signal benchmarks.

Algorithm 1: Multi-task RL in RobustAnalog

Given critic network 𝑄 (𝑆,𝐴, 𝑍𝑖 | 𝜃𝑄 ) and actor network
𝜇 (𝑆 | 𝜃𝜇 ) with critic weights 𝜃𝑄 and actor weights 𝜃𝜇 ;

Given replay buffers {𝑃𝑖 } ;
for episode = 1, M do

Initialize random process N ; Reset all environments 𝑆 ;
if episode ≤𝑊 then

Warm-up: randomly sample an action 𝐴;
end
else

Select action 𝐴 = 𝜇 (𝑆 | 𝜃𝜇 ) + N according to the
current policy and exploration noise;

end
Denormalize and refine 𝐴 with design constrains to get
𝐴;
Simulate the 𝐴 for each task to get rewards {𝑅𝑖 } ;
Store each transition (𝑆,𝐴, 𝑅, 𝑍𝑖 ) in 𝑃𝑖 ;
if episode >𝑊 then

Sample a stratified batch of (𝑆,𝐴, 𝑅, 𝑍𝑖 ) from {𝑃𝑖 }
(batch size = 𝑁𝑠 );
Update the critic by minimizing K losses with
PCGrad:

𝐿𝑖 =
1
𝑁s

∑𝑁s
𝑘=1 (𝑅𝑘 − 𝐵 −𝑄 (𝑆𝑘 , 𝐴𝑘 , 𝑍𝑖 | 𝜃𝑄 ))2;

Update the actor using the K gradients modified by
PCGrad:

∇𝜃𝜇 𝐽𝑖 =
1
𝑁s

∑𝑁s
𝑘=1 ∇𝑎𝑄 (𝑆,𝐴,𝑍𝑖 |𝜃𝑄 ) |

𝑆𝑘 ,𝜇 (𝑆𝑘 )∇𝜃𝜇 𝜇 (𝑆 |𝜃𝜇 ) |
𝑆𝑘

∇𝜃𝜇 𝐽𝑖 = 𝑃𝐶𝐺𝑟𝑎𝑑 (∇𝜃𝜇 𝐽𝑖 )
end

end

a faster learning speed for related tasks. In our setting, we cre-
ate a multi-task agent whose critic can predict the value of task-
conditioned action-state pairs. Since the target of the actor is to look
for a sizing that passes all tasks, the actor model is set to be task
agnostic. Another benefit from shared representations is its ability
to generalize to unseen corner tasks, which is useful in Monte Carlo
corner tests. There are more discussions in Section 4.
State. The single-task RL state formulation is adopted from [27].
Besides the single-task setting, the PVT information is embedded in
our multi-task states, 𝑠′ = (𝑠, 𝑧𝑖 ), where 𝑧𝑖 is the normalized corner
vector (𝑝, 𝑣, 𝑡).

Reward. Our reward is formulated as:

𝑅 =

{
𝑟, 𝑟 < −0.02
0.2, 𝑟 ≥ −0.02 (2)

𝑟 =

𝑀∑︁
𝑖=1

min{
𝑚𝑖 −𝑚∗

𝑖

𝑚𝑖 +𝑚∗
𝑖

, 0} (3)

where𝑚𝑖 is the current simulated 𝑖𝑡ℎ performance metric and
𝑚∗
𝑖
is the corresponding constraint. The reward is a measure of

the relative distance between the current performance metrics and
the corresponding design targets. Once the requirements are met,
the reward value is fixed at 0.2. The value of 0.2 is fixed for any
circuit without any tuning. This reward formulation is motivated
by the design goal in the real world. Designers tend not to over-
optimize the circuits. It is more important that designers can fulfill
the requirements in a short period of time.
Action. The action vector is a set of values corresponding to the
sizing parameters for each circuit. They include transistor sizes
(width, length) and capacitor values. The details of settings for each
benchmark are illustrated in section 4.
Training. The environment includes the circuit, simulator, and
PVT information. Each time we query the environment, it simu-
lates the circuit and returns the performance with PVT information.
After agent-environment interactions, samples (𝑠, 𝑎, 𝑟, 𝑧𝑖 ) will be
stored in the replay buffers , where 𝑠 is the state, 𝑎 is the action, 𝑟 is
the reward, and 𝑧𝑖 is the corner task ID. The critic neural network
takes (𝑠, 𝑎, 𝑧𝑖 ) as a input and predicts the corresponding value for
the current corner task. Relying on the insight that performance
under different corners are related, most of critic neural network
parameters are shared across tasks except a few in the input layer.
The task ID is removed from the inputs of the actor neural net-
work. The training process is modified from DDPG [13]. Details
are illustrated in Algorithm 1.𝑀 is the max optimization episodes
and𝑊 is the warm-up episodes. 𝑁 is the truncated norm noise. 𝑁𝑠

is the training batch size. The key difference from the single-task
setting is that we sample a stratified batch from buffers every time
and generate task-specific losses. Also, samples from different tasks
are stored in separated tasks. For the optimization strategy, we use
PCGrad [30] to address conflicting gradients from different tasks.

3.4 Task Space Pruning
Although multi-task training has improved the efficiency of opti-
mization on different corner tasks, we can still reduce the number
of simulations further by selecting a small-sized training task set.
Since our final goal is to pass all the corner tasks, we must be
able to iteratively improve our optimization results with a series of
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Figure 5: Compare learning curves (average reward vs. # simulation)
among baselines and our proposed RobustAnalog. Reward=0.2 in-
dicates all tasks are passed. RobustAnalog hits the reward of 0.2
significantly faster than the baseline methods on all benchmarks.

training task sets, as shown in Figure 1. Therefore, we choose to
incrementally train our NN-based RL agent since it has the trans-
ferability and capability of inheriting the trained weights from last
cycle[19, 27]. Such transferability makes it compatible with the fol-
lowing task space pruning technique, which is a major advantage
of multi-task RL methods over other optimization methods like
Bayesian optimization and Evolutionary strategy.

Choosing a small batch from a large number of tasks is non-
trivial. Straightforward ways include sampling tasks randomly from
the full set [8] and human-inspired worst-case design methodol-
ogy [29]. However, a scalarized reward cannot reflect the worst
cases because of multi-criteria performances. To address the prob-
lem mentioned above, we first use k-means [15] to cluster the
corners based on their multi-dimensional metric vector and rank
the corners in the same cluster by their rewards. Corners in the
same cluster have the similar performance pattern. Therefore, the
value of rewards in the same cluster can better reflect the "good-
ness" of one corner’s performance. For example, Figure 2 shows
two corner clusters of strongARM benchmark. Second, we select
the worst corner in each cluster to form a training corner set for the
agent. With this pruning technique, the task space for multi-task
RL training in each iteration is pruned to be a significantly smaller
scale while still being a good representation of the full task space.

4 EXPERIMENTS
4.1 Analog/Mixed-signal Circuits
We experiment with three real-world analog/mixed-signal circuits.
They are two-stage operational transimpedance amplifier (Two-
stage OTA), folded-cascode operational transimpedance amplifier
(Folded-Cascode OTA) and strongARM Latch. They are chosen for
three reasons. First, they are the most important and common-used

blocks in various systems. Engineers usually spend the longest
time optimizing the performance and robustness of these circuits.
Second, they include two representative kinds of analog circuits
which are the static and dynamic circuits. The two kinds are dictated
by different physic and engineering rules. The third reason is that
they have different levels of variations. Two-stage OTA is with
45nm, and the other two are with older 180nm technology. 45nm has
a larger variation. Therefore, we can study the impacts of different
variation magnitudes. Each circuit is a composition of a number
of transistors and capacitors. Each transistor has two parameters,
the gate width and length (𝑤 , 𝑙 ). Capacitors have one parameter (c),
the capacitance value. The initial design spaces of these devices are
given by human designers. To minimize the efforts of designers,
our design space are set to be very large. They have 1014, 1027, and
6.4 × 1064 possible values correspondingly.

The circuits are simulated on SPICE-based simulators [16]. Two-
stage OTA is on Ngspice and BSIM 45nm predictive technology [4].
Folded-Cascode OTA and strongARM Latch are on Cadence spectre
and TSMC 180nm technology, a commercial simulator tool.
Two-stage OTA.. The topology is shown in Figure 3. It has 7
parameters including 6 transistor widths (w) and 1 capacitor value
(c). The range of w is [0.5, 50]∗1𝜇𝑚 and [0.1, 10]∗1𝑝𝐹 for c. The
total design space is 1014 possible values. The performance metrics
are current(i), unity gain-bandwidth (ugb), phase margin (phm).
The corresponding constraints (C) and the PVT corner tests (T) are
showed below. There are 30 corners (5 × 3 × 2).

𝑇 = {𝑇𝑇, 𝑆𝑆, 𝐹𝐹, 𝐹𝑆, 𝑆𝐹 } × {1.0𝑉 , 1.1𝑉 , 1.2𝑉 }×
{0◦𝐶, 100◦𝐶 }
𝐶 = {𝑖 ≤ 5𝑚𝐴, 𝑢𝑔𝑏 ≥ 15𝑀𝐻𝑧, 𝑝ℎ𝑚 ≥ 60◦}

Folded-Cascode OTA.. The topology is shown in Figure 3. It has
20 parameters, including 7 transistor widths (w), 7 lengths (l), 2
capcitor values (c) and 4 transistor ratios (n). The range of w is
[0.24, 150]∗1𝜇𝑚, [0.18, 2]∗1𝜇𝑚 for l, [0.1, 2]∗1𝑝𝐹 , [0.1, 10]∗𝑝𝐹 for
different c. The total design space is 6.4 × 1064 possible values. The
performance metrics are power(p), unity gain (g), phase margin
(phm), common-mode rejection ratio (CMRR), power supply re-
jection ratio (PSRR), noise (n), unity-gain-bandwidth (ugb). The
corresponding constraints (C) and the PVT corner tests (T) are
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Figure 6: Ablation of applying multi-task and task space pruning.
Using two together brings the least simulation cost.

showed below. There are 20 corners (5 × 2 × 2).

𝑇 = {𝑇𝑇, 𝑆𝑆, 𝐹𝐹, 𝐹𝑆, 𝑆𝐹 } × {1.6𝑉 , 1.8𝑉 } × {0◦𝐶, 100◦𝐶 }
𝐶 = {𝑝 ≤ 1𝑚𝑊, 𝑢𝑔𝑏 ≥ 30𝑀𝐻𝑧, 𝑝ℎ𝑚 ≥ 60◦, 𝑛 ≤ 30𝑚𝑉,

𝑔 ≥ 60𝑑𝐵, 𝐶𝑀𝑅𝑅 ≥ 80𝑑𝐵, 𝑃𝑆𝑅𝑅 ≥ 80𝑑𝐵 }

strongARM Latch.. The topology is shown in Figure 3. It has
7 parameters, including 6 transistor widths (w), 1 capcitor values
(c). The range of w is [0.22, 50]∗1𝜇𝑚, [0.15, 4.5]∗1𝑝𝐹 for c. The
total design space is 1027 possible values. The performance metrics
are power(p), set delay (sd), reset delay (rd), set voltage (sv), reset
voltage (rv), noise (n). The corresponding constraints (C) and the
PVT corner tests (T) are showed below. There are 20 corners (5 ×
2 × 2).

𝑇 = {𝑇𝑇, 𝑆𝑆, 𝐹𝐹, 𝐹𝑆, 𝑆𝐹 } × {1.1𝑉 , 1.2𝑉 } × {0◦𝐶, 100◦𝐶 }
𝐶 = {𝑝 ≤ 4.5𝑢𝑊 , 𝑛 ≤ 50𝑢𝑉 , 𝑠𝑑 ≤ 14𝑛𝑠, 𝑟𝑑 ≤ 9.1𝑛𝑠,
𝑠𝑣 ≥ 𝑣𝑑𝑑 − 0.05𝑉 , 𝑟𝑣 ≤ 0.05𝑉 }

4.2 Training Settings
To demonstrate the effectiveness of the proposed RobustAnalog,
we apply RobustAnalog to the above three circuits and record the
simulation time it took to pass all the corner tests. We compare
the results of RobustAnalog with Bayesian Optimization (BO) [21],
Evolutionary Strategy (ES) [9, 24], and single-task RL algorithm
(DDPG) adopted for sizing in [27]. For the three baselines, the
variation-aware circuit optimization is considered as a single task.
The average reward of all corner tasks is used to indicate the good-
ness of the current sizing. BO, ES, and DDPG improve the average
reward until it reaches 0.2. In ES, DDPG, and RobustAnalog, the
circuit simulation time accounts for over 95% of the total time. The
computation time of BO becomes comparable with simulation time
after many iterations. We compare these methods in terms of the
simulation time. For RL training, we use a training batch size of 64,
replay buffer size of 1000, and exploration noise standard deviation
of 0.2. Actor and critic are all 4-layer multilayer perceptions (MLPs).
For RL methods, we evaluate the agent every 10 training steps. All
the experiments are conducted on a 6 core CPU. RL methods are
implemented with PyTorch [18, 22]

4.3 Evaluation of the Circuit Optimization
In all three circuit benchmarks, RobustAnalog achieved the smallest
simulation cost to accomplish all the corner tasks. In each bench-
mark, it passed all the corners in the runs of different random seeds
hence a 100% success rate. The comparison of simulation costs
are shown in Figure 4. RobustAnalog consistently outperforms the
baseline methods including ES, BO, and single-task DDPG. The
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simulation cost reductions are huge, 26x in Two-Stage OTA, 30x in
strongARM Latch, and 14x in Folded-Cascode OTA. Note that BO
becomes slow after having many samples. We ran BO for the same
time with other methods for fair comparisons. We have several
findings from the experiment results. First, all methods spend more
simulations on optimizing the Two-Stage OTA which has larger
variations with the 45nm technology. Second, compared to the ES
and BO, single-task DDPG performs better in strongARM Latch
while worse in the Two-Stage and Folded-Cascode OTAs. This is
possibly because strongARM Latch is a dynamic circuit that is dif-
ferent from the static OTAs. To conclude, RobustAnalog shows a
significant efficiency improvement in the different levels of varia-
tions and circuit benchmarks with distinct natures. The learning
curves are shown in Figure 5.

4.4 Analysis
Multi-Task and Task Space Pruning.. We conduct an ablation
study on multi-task training and task space pruning. In Figure 6,
we compared simulation costs of DDPG baseline, multi-task DDPG
with full task set, and RobustAnalog (multi-task DDPG with pruned
task set). DDPG took over 300,000 simulations to pass all corner
tests. With the multi-task training, the number of simulations was
reduced to 35,000. With the pruned task space, the number of sim-
ulations was further cut down to 7,000.
Scale to Large Corner Sets.. Here we empirically study how the
simulation cost scales as we take on more and more corner tasks.
In the previous sections, we discussed the fully factorial corner test
for each benchmark. In industry-level circuits, randomly sampled
corners, Monte Carlo corners, are also used. There can be hundreds,
even thousands of Monte Carlo corners needed to perform a thor-
ough verification. Therefore, the scalability to a large corner set
is important. To demonstrate the scalability of RobustAnalog, we
conduct Monte Carlo sampling on process variation modelsets {TT,
FF, SS, FS, SF}, continuous voltage range [1.0, 1.2] and continuous
temperature range [0°C, 100°C] and form 5 Monte Carlo corner test
sets of different sizes. These Monte Carlo corner sets have 20, 40, 80,
100, 150 corners, respectively. Experiments are done on Two-Stage
OTA benchmark and results are shown in Figure 7. RobustAnalog
only needs 69% more simulations when the corner task set becomes
7.5× larger. The simulation cost difference between RobustAnalog
and the baseline methods will become 4.4× larger at the scale of
150 corners.
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5 CONCLUSION
We present RobustAnalog, a fast variation-aware optimization
framework based on multi-task RL. The key property of Robus-
tAnalog is the ability to conduct efficient multi-task learning with
pruned training task space. Therefore, it can rapidly design circuits
for variations. We show that RobustAnalog can reduce simulation
cost by an order of magnitude compared with baselines. It can also
scale to a large number of variation cases. As today’s chip design
becomes extremely challenging with the presence of variations,
RobustAnalog shows the potential to drastically shorten the circuit
design cycle and reduce the cost.
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