
Logic Synthesis Meets Machine Learning:
Trading Exactness for Generalization

Shubham Raif,6,†, Walter Lau Neton,10,†, Yukio Miyasakao,1, Xinpei Zhanga,1, Mingfei Yua,1, Qingyang Yia,1,
Masahiro Fujitaa,1, Guilherme B. Manskeb,2, Matheus F. Pontesb,2, Leomar S. da Rosa Juniorb,2,

Marilton S. de Aguiarb,2, Paulo F. Butzene,2, Po-Chun Chienc,3, Yu-Shan Huangc,3, Hoa-Ren Wangc,3,
Jie-Hong R. Jiangc,3, Jiaqi Gud,4, Zheng Zhaod,4, Zixuan Jiangd,4, David Z. Pand,4, Brunno A. de Abreue,5,9,

Isac de Souza Camposm,5,9, Augusto Berndtm,5,9, Cristina Meinhardtm,5,9, Jonata T. Carvalhom,5,9,
Mateus Grellertm,5,9, Sergio Bampie,5, Aditya Lohanaf,6, Akash Kumarf,6, Wei Zengj,7, Azadeh Davoodij,7,

Rasit O. Topalogluk,7, Yuan Zhoul,8, Jordan Dotzell,8, Yichi Zhangl,8, Hanyu Wangl,8, Zhiru Zhangl,8,
Valerio Tenacen,10, Pierre-Emmanuel Gaillardonn,10, Alan Mishchenkoo,†, and Satrajit Chatterjeep,†

aUniversity of Tokyo, Japan, bUniversidade Federal de Pelotas, Brazil, cNational Taiwan University,
Taiwan, dUniversity of Texas at Austin, USA, eUniversidade Federal do Rio Grande do Sul, Brazil,
fTechnische Universitaet Dresden, Germany, jUniversity of Wisconsin–Madison, USA, kIBM, USA,

lCornell University, USA, mUniversidade Federal de Santa Catarina, Brazil, nUniversity of Utah, USA,
oUC Berkeley, USA, pGoogle AI, USA

The alphabets in the superscript represent the affiliation while the numbers represent the team number
†Equal contribution. Email: shubham.rai@tu-dresden.de, walter.launeto@utah.edu, alanmi@berkeley.edu, schatter@google.com

Abstract—Logic synthesis is a fundamental step in hard-
ware design whose goal is to find structural representations
of Boolean functions while minimizing delay and area.
If the function is completely-specified, the implementa-
tion accurately represents the function. If the function is
incompletely-specified, the implementation has to be true
only on the care set. While most of the algorithms in logic
synthesis rely on SAT and Boolean methods to exactly
implement the care set, we investigate learning in logic
synthesis, attempting to trade exactness for generalization.
This work is directly related to machine learning where
the care set is the training set and the implementation
is expected to generalize on a validation set. We present
learning incompletely-specified functions based on the re-
sults of a competition conducted at IWLS 2020. The goal
of the competition was to implement 100 functions given
by a set of care minterms for training, while testing the
implementation using a set of validation minterms sampled
from the same function. We make this benchmark suite
available and offer a detailed comparative analysis of the
different approaches to learning.

I. INTRODUCTION

Logic synthesis is a key ingredient in modern electronic
design automation flows. A central problem in logic
synthesis is the following: Given a Boolean function
f : Bn → B (where B denotes the set {0, 1}), construct
a logic circuit that implements f with the minimum
number of logic gates. The function f may be completely
specified, i.e., we are given f(x) for all x ∈ Bn, or it may
be incompletely specified, i.e., we are only given f(x)
for a subset of Bn called the careset. An incompletely
specified function provides more flexibility for optimizing
the circuit since the values produced by the circuit outside
the careset are not of interest.

Recently, machine learning has emerged as a key
enabling technology for a variety of breakthroughs in
artificial intelligence. A central problem in machine
learning is that of supervised learning: Given a class
H of functions from a domain X to a co-domain Y , find

a member h ∈ H that best fits a given set of training
examples of the form (x, y) ∈ X×Y . The quality of the
fit is judged by how well h generalizes, i.e., how well h
fits examples that were not seen during training.

Thus logic synthesis and machine learning are closely
related. Supervised machine learning can be seen as
logic synthesis of an incompletely specified function
with an added constraint (or objective): the circuit must
also generalize well to the test set. Conversely, logic
synthesis may be seen as a machine learning problem
where in addition to generalization, we care about finding
an element of H that has small size, and the sets X and
Y are not smooth but discrete.

To explore this connection between the two fields, the
two last authors of this paper organized a programming
contest at the 2020 International Workshop in Logic
Synthesis. The goal of this contest was to come up
with an algorithm to synthesize a small circuit for a
Boolean function f : Bn → B learnt from a training set
of examples. Each example (x, y) in the training set is an
input-output pair, i.e., x ∈ Bn and y ∈ B. The training set
was chosen at random from the 2n possible inputs of the
function (and in most cases was much smaller than 2n).
The quality of the solution was evaluated by measuring
accuracy on a test set not provided to the participants.

The synthesized circuit for f had to be in the form
of an And-Inverter Graph (AIG) [1, 2] with no more
than 5000 nodes. An AIG is a standard data structure
used in logic synthesis to represent Boolean functions
where a node corresponds to a 2-input And gate and
edges represent direct or inverted connections. Since an
AIG can represent any Boolean function, in this problem
H is the full set of Boolean functions on n variables.

To evaluate the algorithms proposed by the participants,
we created a set of 100 benchmarks drawn from a
mix of standard problems in logic synthesis such as

ar
X

iv
:2

01
2.

02
53

0v
1

 [
cs

.L
G

]
 4

 D
ec

 2
02

0

synthesis of arithmetic circuits and random logic from
standard logic synthesis benchmarks. We also included
some tasks from standard machine learning benchmarks.
For each benchmark the participants were provided with
the training set (which was sub-divided into a training set
proper of 6400 examples and a validation set of another
6400 examples though the participants were free to use
these subsets as they saw fit), and the circuits returned
by their algorithms were evaluated on the corresponding
test set (again with 6400 examples) that was kept private
until the competition was over. The training, validation
and test sets were created in the PLA format [3]. The
score assigned to each participant was the average test
accuracy over all the benchmarks with possible ties being
broken by the circuit size.

Ten teams spanning 6 countries took part in the contest.
They explored many different techniques to solve this
problem. In this paper we present short overviews of the
techniques used by the different teams (the superscript
for an author indicates their team number), as well a
comparative analysis of these techniques. The following
are our main findings from the analysis:
• No one technique dominated across all the bench-

marks, and most teams including the winning team
used an ensemble of techniques.

• Random forests (and decision trees) were very
popular and form a strong baseline, and may be
a useful technique for approximate logic synthesis.

• Sacrificing a little accuracy allows for a significant
reduction in the size of the circuit.

These findings suggest an interesting direction for future
work: Can machine learning algorithms be used for
approximate logic synthesis to greatly reduce power and
area when exactness is not needed?

Finally, we believe that the set of benchmarks used
in this contest along with the solutions provided by the
participants (based on the methods described in this paper)
provide an interesting framework to evaluate further
advances in this area. To that end we are making these
available at https://github.com/iwls2020-lsml-contest/.

II. BACKGROUND AND PRELIMINARIES

We review briefly the more popular techniques used.
Sum-of-Products (SOP), or disjunctive normal form,

is a two-level logic representation commonly used in
logic synthesis. Minimizing the SOP representation of an
incompletely specified Boolean function is a well-studied
problem with a number of exact approaches [4, 5, 6] as
well as heuristics [7, 8, 9, 10] with ESPRESSO [7] being
the most popular.

Decision Trees (DT) and Random Forests (RF) are
very popular techniques in machine learning and they
were used by many of the teams. In the contest scope,
the decision trees were applied as a classification tree,
where the internal nodes were associated to the function
input variables, and terminal nodes classify the function
as 1 or 0, given the association of internal nodes. Thus,
each internal node has two outgoing-edges: a true edge
if the variable value exceeds a threshold value, and a
false value otherwise. The threshold value is defined
during training. Hence, each internal node can be seen
as a multiplexer, with the selector given by the threshold
value. Random forests are composed by multiple decision
trees, where each tree is trained over a distinct feature,

Table I: An overview of different types of functions in
the benchmark set. They are selected from three domains:
Arithmetic, Random Logic, and Machine Learning.

00-09 2 MSBs of k-bit adders for k ∈ {16, 32, 64, 128, 256}
10-19 MSB of k-bit dividers and remainder circuits for k ∈ {16, 32, 64, 128, 256}
20-29 MSB and middle bit of k-bit multipliers for k ∈ {8, 16, 32, 64, 128}
30-39 k-bit comparators for k ∈ {10, 20, . . . , 100}
40-49 LSB and middle bit of k-bit square-rooters with k ∈ {16, 32, 64, 128, 256}
50-59 10 outputs of PicoJava design with 16-200 inputs and roughly balanced onset & offset
60-69 10 outputs of MCNC i10 design with 16-200 inputs and roughly balanced onset & offset
70-79 5 other outputs from MCNC benchmarks + 5 symmetric functions of 16 inputs
80-89 10 binary classification problems from MNIST group comparisons
90-99 10 binary classification problems from CIFAR-10 group comparisons

so that trees are not very similar. The output is given by
the combination of individual predictions.

Look-up Table (LUT) Network is a network of
randomly connected k-input LUTs, where each k-input
LUT can implement any function with up to k variables.
LUT networks were first employed in a theoretical
study to understand if pure memorization (i.e., fitting
without any explicit search or optimization) could lead
to generalization [11].

III. BENCHMARKS

The set of 100 benchmarks used in the contest can
be broadly divided into 10 categories, each with 10 test-
cases. The summary of categories is shown in Table I. For
example, the first 10 test-cases are created by considering
the two most-significant bits (MSBs) of k-input adders
for k ∈ {16, 32, 64, 128, 256}.

Test-cases ex60 through ex69 were derived from
MCNC benchmark [12] i10 by extracting outputs 91,
128, 150, 159, 161, 163, 179, 182, 187, and 209 (zero-
based indexing). For example, ex60 was derived using
the ABC command line: &read i10.aig; &cone -O 91.

Five test-cases ex70 through ex74 were similarly
derived from MCNC benchmarks cordic (both outputs),
too large (zero-based output 2), t481, and parity.

Five 16-input symmetric functions used in ex75
through ex79 have the following signatures:

00000000111111111, 11111100000111111,
00011110001111000, 00001110101110000, and
00000011111000000.

They were generated by ABC using command sym-
fun 〈signature〉.

Table II shows the rules used to generate the last 20
benchmarks. Each of the 10 rows of the table contains
two groups of labels, which were compared to generate
one test-case. Group A results in value 0 at the output,
while Group B results in value 1. The same groups
were used for MNIST [13] and CIFAR-10 [14]. For
example, benchmark ex81 compares odd and even labels
in MNIST, while benchmark ex91 compares the same
labels in CIFAR-10.

In generating the benchmarks, the goal was to fulfill the
following requirements: (1) Create problems, which are
non-trivial to solve. (2) Consider practical functions, such
as arithmetic logic and symmetric functions, extract logic
cones from the available benchmarks, and derive binary
classification problems from the MNIST and CIFAR-10
machine learning challenges. (3) Limit the number of AIG
nodes in the solution to 5000 to prevent the participants
from generating large AIGs and rather concentrate on
algorithmic improvements aiming at high solution quality
using fewer nodes.

https://github.com/iwls2020-lsml-contest/

Table II: Group comparisons for MNIST and CIFAR10

ex Group A Group B

0 0-4 5-9
1 odd even
2 0-2 3-5
3 01 23
4 45 67
5 67 89
6 17 38
7 09 38
8 13 78
9 03 89

There was also an effort to discourage the participants
from developing strategies for reverse-engineering the
test-cases based on their functionality, for example, detect-
ing that some test-cases are outputs of arithmetic circuits,
such as adders or multipliers. Instead, the participants
were encouraged to look for algorithmic solutions to
handle arbitrary functions and produce consistently good
solutions for every one independently of its origin.

IV. OVERVIEW OF THE VARIOUS APPROACHES

Team 1’s solution is to take the best one among
ESPRESSO, LUT network, RF, and pre-defined standard
function matching (with some arithmetic functions). If
the AIG size exceeds the limit, a simple approximation
method is applied to the AIG.

ESPRESSO is used with an option to finish optimiza-
tion after the first irredundant operation. LUT network
has some parameters: the number of levels, the number
of LUTs in each level, and the size of each LUT. These
parameters are incremented like a beam search as long
as the accuracy is improved. The number of estimators
in random forest is explored from 4 to 16.

A simple approximation method is used if the number
of AIG nodes is more than 5000. The AIG is simulated
with thousands of random input patterns, and the node
which most frequently outputs 0 is replaced by constant-
0 while taking the negation (replacing with constant-1)
into account. This is repeated until the AIG size meets
the condition. The nodes near the outputs are excluded
from the candidates by setting a threshold on levels.
The threshold is explored through try and error. It was
observed that the accuracy drops 5% when reducing
3000-5000 nodes.

Team 2’s solution uses J48 and PART AI classifiers
to learn the unknown Boolean function from a single
training set that combines the training and validation
sets. The algorithm first transforms the PLA file in an
ARFF (Attribute-Relation File Format) description to
handle the WEKA tool [15]. We used the WEKA tool to
run five different configurations to the J48 classifier and
five configurations to the PART classifier, varying the
confidence factor. The J48 classifier creates a decision
tree that the developed software converts in a PLA file. In
the sequence, the ABC tool transforms the PLA file into
an AIG file. The PART classifier creates a set of rules that
the developed software converts in an AAG file. After,
the AIGER transforms the AAG file into an AIG file
to decide the best configuration for each classifier. Also,
we use the minimum number of objects to determine the
best classifier. Finally, the ABC tool checks the size of
the generated AIGs to match the contest requirements.

Team 3’s solution consists of decision tree based
and neural network (NN) based methods. For each

benchmark, multiple models are trained and 3 are selected
for ensemble. For the DT-based method, the fringe feature
extraction process proposed in [16, 17] is adopted. The
DT is trained and modified for multiple iterations. In
each iteration, the patterns near the fringes (leave nodes)
of the DT are identified as the composite features of
2 decision variables. These newly detected features are
then added to the list of decision variables for the DT
training in the next iteration. The procedure terminates
when there are no new features found or the number of
the extracted features exceeds the preset limit.

For the NN-based method, a 3-layer network is
employed, where each layer is fully-connected and uses
sigmoid as the activation function. As the synthesized
circuit size of a typical NN could be quite large, the
connection pruning technique proposed in [18] is adopted
to meet the stringent size restriction. The NN is pruned
until the number of fanins of each neuron is at most
12. Each neuron is then synthesized into a LUT by
rounding its activation [11]. The overall dataset, training
and validation set combined, for each benchmark is re-
divided into 3 partitions before training. Two partitions
are selected as the new training set, and the remaining one
as the new validation set, resulting in 3 different grouping
configurations. Under each configuration, multiple models
are trained with different methods and hyper-parameters,
and the one with the highest validation accuracy is chosen
for ensemble.

Team 4’s solution is based on multi-level ensemble-
based feature selection, recommendation-network-based
model training, subspace-expansion-based prediction, and
accuracy-node joint exploration during synthesis.

Given the high sparsity in the high-dimensional boolean
space, a multi-level feature importance ranking is adopted
to reduce the learning space. Level 1: a 100-ExtraTree
based AdaBoost [19] ensemble classifier is used with
10-repeat permutation importance [20] ranking to select
the top-k important features, where k ∈ [10, 16]. Level 2:
a 100-ExtraTree based AdaBoost classifier and an
XGB classifier with 200 trees are used with stratified 10-
fold cross-validation to select top-k important features,
where k ranges from 10 to 16, given the 5,000 node
constraints.

Based on the above 14 groups of selected features, 14
state-of-the-art recommendation models, Adaptive Factor-
ization Network (AFN) [21], are independently learned
as DNN-based boolean function approximators. A 128-
dimensional logarithmic neural network is used to learn
sparse boolean feature interaction, and a 4-layer MLP is
used to combine the formed cross features with overfitting
being handled by fine-tuned dropout. After training, a
k-feature trained model will predict the output for 2k

input combinations to expand the full k-dimensional
hypercube, where other pruned features are set to DON’T
CARE type in the predicted .pla file to allow enough
smoothness in the Boolean hypercube. Such a subspace
expansion technique can fully-leverage the prediction
capability of our model to maximize the accuracy on the
validation/test dataset while constraining the maximum
number of product terms for node minimization during
synthesis.

Team 5’s solution explores the use of DTs and RFs,
along with NNs, to learn the required Boolean functions.
DTs/RFs are easy to convert into SOP expressions. To
evaluate this proposal, the implementation obtains the

models using the Scikit-learn Python library [22]. The
solution is chosen from simulations using Decision-
TreeClassifier for the DTs, and an ensemble of Decision-
TreeClassifier for the RFs – the RandomForestClassifier
structure would be inconvenient, considering the 5000-
gate limit, given that it employs a weighted average of
each tree.

The simulations are performed using different tree
depths and feature selection methods (SelectKBest and
SelectPercentile). NNs are also employed to enhance
our exploration capabilities, using the MLPClassifier
structure. Given that SOPs cannot be directly obtained
from the output of the NN employed, the NN is used as a
feature selection method to obtain the importance of each
input based on their weight values. With a small sub-
set of weights obtained from this method, the proposed
solution performs a small exhaustive search by applying
combinations of functions on the four features with the
highest importance, considering OR, XOR, AND, and
NOT functions. The SOP with the highest accuracy
(respecting the 5001-gate limit) out of the DTs/RFs
and NNs tested was chosen to be converted to an AIG
file. The data sets were split into an 80%-20% ratio,
preserving the original data set’s target distribution. The
simulations were run using half of the newly obtained
training set (40%) and the whole training set to increase
our exploration.

Team 6’s solution learns the unknown Boolean func-
tion using the method as mentioned in [11]. In order to
construct the LUT network, we use the minterms as input
features to construct layers of LUTs with connections
starting from the input layer. We then carry out two
schemes of connections between the layers: ‘random
set of input’ and ‘unique but random set of inputs’. By
‘random set of inputs’, we imply that we just randomly
select the outputs of preceding layer and feed it to the next
layer. This is the default flow. By ‘unique but random set
of inputs’, we mean that we ensure that all outputs from a
preceding layer is used before duplication of connection.

We carry out experiments with four hyper parameters to
achieve accuracy– number of inputs per LUT, number of
LUTS per layers, selection of connecting edges from the
preceding layer to the next layer and the depth (number
of LUT layers) of the model. We experiment with varying
number of inputs for each LUT in order to get the
maximum accuracy. We notice from our experiments that
4-input LUTs returns the best average numbers across
the benchmark suite.

Once the network is created, we convert the network
into an SOP form using sympy package in python. This
is done from reverse topological order starting from the
outputs back to the inputs. Using the SOP form, we
generate the verilog file which is then used with ABC to
calculate the accuracy.

Team 7’s solution is a mix of conventional ML and
pre-defined standard function matching. If a training set
matches a pre-defined standard function, a custom AIG
of the identified function is written out. Otherwise, an
ML model is trained and translated to an AIG.

Team 7 adopts tree-based ML models for the straight-
forward conversion from tree nodes to SOP terms. The
model is either a decision tree with unlimited depth, or
an extreme gradient boosting (XGBoost) of 125 trees
with a maximum depth of five, depending on the results
of a 10-fold cross validation on training data.

With the learned model, all underlying tree leaves
are converted to SOP terms, which are minimized and
compiled to AIGs with ESPRESSO and ABC, respectively.
If the model is a decision tree, the converted AIG is final.
If the model is XGBoost, the value of each tree leaf is
first quantized to one bit, and then aggregated with a
3-layer network of 5-input majority gates for efficient
implementation of AIGs.

Tree-based models may not perform well in symmetric
functions or complex arithmetic functions. However,
patterns in the importance of input bits can be observed
for some pre-defined standard functions such as adders,
comparators, outputs of XOR or MUX. Before ML, Team
7 checks if the training data come from a symmetric
function, and compares training data with each identified
special function. In case of a match, an AIG of the
identified function is constructed directly without ML.

Team 8’s solution is an ensemble drawing from
multiple classes of models. It includes a multi-layer
perceptron (MLP), binary decision tree (BDT) augmented
with functional decomposition, and a RF. These models
are selected to capture various types of circuits. For all
benchmarks, all models are trained independently, and the
model with the best validation accuracy that results in a
circuit with under 5000 gates is selected. The MLP uses a
periodic activation instead of the traditional ReLU to learn
additional periodic features in the input. It has three layers,
with the number of neurons divided in half between
each layer. The BDT is a customized implementation
of the C4.5 tree that has been modified with functional
decomposition in the cases where the information gain
is below a threshold. The RF is a collection of 17 trees
limited to a maximum depth of 8. RF helps especially
in the cases where BDT overfits.

After training, the AIGs of the trained models are
generated to ensure they are under 5000 gates. In all cases,
the generated AIGs are simplified using the Berkeley
ABC tool to produce the final AIG graph.

Team 9’s proposes a Bootstrapped flow that explores
the search algorithm Cartesian Genetic Programming
(CGP). CGP is an evolutionary approach proposed as
a generalization of Genetic Programming used in the
digital circuit’s domain. It is called Cartesian because the
candidate solutions are composed of a two-dimensional
network of nodes. CGP is a population-based approach
often using the evolution strategies (1+λ)-ES algorithm
for searching the parameter space. Each individual is a
circuit, represented by a two-dimensional integer matrix
describing the functions and the connections among
nodes.

The proposed flow decides between two initialization:
1) starts the CGP search from random (unbiased) indi-
viduals seeking for optimal circuits; or, 2) exploring a
bootstrapped initialization with individuals generated by
previously optimized SOPs created by decision trees or
ESPRESSO when they provide AIGs with more than
55% of accuracy. This flow restricts the node functions
to XORs, ANDs, and Inverters; in other words, we may
use AIG or XAIG to learn the circuits. Variation is
added to the individuals through mutations seeking to
find a circuit that optimizes a given fitness function. The
mutation rate is adaptive, according to the 1/5th rule
[23]. When the population is bootstrapped with DTs or
SOP, the circuit is fine-tuned with the whole training
set. When the random initialization is used, it was tested

Table III: Performance of the different teams

team ↓ test accuracy And gates levels overfit

1 88.69 2517.66 39.96 1.86
7 87.50 1167.50 32.02 0.05
8 87.32 1293.92 21.49 0.14
3 87.25 1550.33 21.08 5.76
2 85.95 731.92 80.63 8.70
9 84.65 991.89 103.42 1.75
4 84.64 1795.31 21.00 0.48
5 84.08 1142.83 145.87 4.17

10 80.25 140.25 10.90 3.86
6 62.40 356.26 8.73 0.88

✔ ✔ ✔✔
✔
✔

✔

✔
✔

✔
✔

✔

✔

✔

✔

✔

✔

✔

Fig. 1: Representation used by various teams

with multiple configurations of sizes and mini-batches
of the training set that change based on the number of
generations processed.

Team 10’s solution learns Boolean function representa-
tions, using DTs. We developed a Python program using
the Scikit-learn library where the parameter max depth
serves as an upper-bound to the growth of the trees,
and is set to be 8. The training set PLA, treated as a
numpy matrix, is used to train the DT. On the other hand,
the validation set PLA is then used to test whether the
obtained DT meets the minimum validation accuracy,
which we empirically set to be 70%. If such a condition
is not met, the validation set is merged with the training
set. According to empirical evaluations, most of the
benchmarks with accuracy < 70% showed a validation
accuracy fluctuating around 50%, regardless of the size
and shapes of the DTs. This suggests that the training
sets were not able to provide enough representative cases
to effectively exploit the adopted technique, thus leading
to DTs with very high training accuracy, but completely
negligible performances. For DTs having a validation
accuracy ≥ 70%, the tree structure is annotated as a
Verilog netlist, where each DT node is replaced with a
multiplexer. The obtained Verilog netlist is then processed
with the ABC Synthesis Tool in order to generate a
compact and optimized AIG structure. This approach has
shown an average accuracy over the validation set of 84%,
with an average size of AIG of 140 nodes (and no AIG
with more than 300 nodes). More detailed information
about the adopted technique can be found in [24].

V. RESULTS

A. Accuracy
Table III shows the average accuracy of the solutions

found by all the 10 teams, along with the average circuit
size, the average number of levels in the circuit, and
the overfit measured as the average difference between

500 1000 1500 2000 2500
number of And gates

50

60

70

80

90

100

te
st

 a
cc

ur
ac

y

(1140.76, 91.0)(537, 89.88)

Pareto curve for virtual best
Average accuracy by team
Top accuracy achieved by Team 1

Fig. 2: Acc-size trade-off across teams and for virtual best

0 20 40 60 80 100
benchmarks

50

60

70

80

90

100

te
st

 a
cc

ur
ac

y

Fig. 3: Maximum accuracy achieved for each example

the accuracy on the validation set and the test set. The
following interesting observations can be made: (i) most
of the teams achieved more than 80% accuracy. (ii) the
teams were able to find circuits with much fewer gates
than the specification.

When it comes to comparing network size vs accuracy,
there is no clear trend. For instance, teams 1 and 7 have
similar accuracy, with very divergent number of nodes,
as seen in Table III. For teams that have relied on just
one approach, such as Team 10 and 2 who used only
decision trees, it seems that more AND nodes might lead
to better accuracy. Most of the teams, however, use a
portfolio approach, and for each benchmark choose an
appropriate technique. Here it is worth pointing out that
there is no approach, which is consistently better across
all the considered benchmarks. Thus, applying several
approaches and deciding which one to use, depending
on the target Boolean functions, seems to be the best
strategy. Fig. 1 presents the approaches used by each
team.

While the size of the network was not one of the
optimization criteria in the contest, it is an important
parameter considering the hardware implementation, as
it impacts area, delay, and power. The average area
reported by individual teams are shown in Fig. 2 as ‘×’.
Certain interesting observations can be made from Fig. 2.
Apart from showing the average size reached by various
teams, it also shows the Pareto-curve between the average
accuracy across all benchmarks and their size in terms of
number of AND gates. It can be observed that while 91%
accuracy constraint requires about 1141 gates, a reduction
in accuracy constraint of merely 2%, requires a circuit
of only half that size. This is an insightful observation
which strongly suggests that with a slight compromise

1 2 3 4 5 6 7 8 9 10
team

0

10

20

30

40

50

60

70

nu
m

be
r o

f e
xa

m
pl

es
 w

ith
 h

ig
he

st
 a

cc
ur

ac
y

Best
Within top-1%

Fig. 4: Top-accuracy results achieved by different teams

in the accuracy, much smaller size requirements can be
satisfied.

Besides area, it is also worth to look for the number
of logic-levels in the generated implementation, as it
correlates with circuit delay. Similar to the number of
nodes, there is no clear distinction on how the number of
levels impacts the final accuracy. Team 6 has delivered
the networks with the smallest depth, often at the cost
of accuracy. In practice, the winning team has just the
4th larger depth among the 10 teams.

Finally, Fig. 3 shows the maximum accuracy achieved
for each benchmarks. While most of the benchmarks
achieved a 100% accuracy, several benchmarks only
achieved close to 50%. That gives an insight on which
benchmarks are harder to generalize, and these bench-
marks might be used as test-case for further developments
on this research area.

B. Generalization gap
The generalization gap for each team is presented in

the last column of Table III. This value presents how
well the learnt model can generalize on an unknown set.
Usually, a generalization gap ranging from 1% to 2% is
considered to be good. It is possible to note that most of
the teams have reached this range, with team 7 having
a very small gap of 0.05%. Furthermore, given that the
benchmark functions are incompletely-specified, with
a very small subset of minterms available for training,
reaching generalization in small networks is a challenge.
Therefore, a special mention must be given to Team 10,
who reached a high level of accuracy with extremely
small network sizes.

C. Win-rate for different teams
Fig. 4 shows a bar chart showing which team achieved

the best accuracy and the top-1% for the largest number
of benchmarks. Team 3 is the winner in terms of both
of these criteria, achieving the best accuracy among all
the teams for 42 benchmark. Following Team 3, is Team
7, and then the winning Team 1. Still, when it comes to
the best average accuracy, Team 1 has won the contest.
This figure gives insights on which approaches have been
in the top of achieved accuracy more frequently, and
give a pointer to what could be the ideal composition of
techniques to achieve high-accuracy. As shown in Fig. 1,
indeed a portfolio of techniques needs to be employed to
achieve high-accuracy, since there is no single technique
that dominates.

VI. CONCLUSION

In this work, we explored the connection between
logic synthesis of incompletely specified functions and
supervised learning. This was done via a programming
contest held at the 2020 International Workshop on Logic
and Synthesis where the objective was to synthesize small
circuits that generalize well from input-output samples.

The solutions submitted to the contest used a variety
of techniques spanning logic synthesis and machine
learning. Portfolio approaches ended up working better
than individual techniques, though random forests formed
a strong baseline. Furthermore, by sacrificing a little
accuracy, the size of the circuit could be greatly reduced.
These findings suggest an interesting direction for future
work: When exactness is not needed, can synthesis be
done using machine learning algorithms to greatly reduce
area and power?

Future extensions of this contest could target circuits
with multiple outputs and algorithms generating an
optimal trade-off between accuracy and area (instead
of a single solution).

REFERENCES
[1] Satrajit Chatterjee. “On Algorithms for Technology Mapping”.

PhD thesis. University of California, Berkeley, 2007.
[2] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER

1.9 And Beyond. Tech. rep. Institute for Formal Models and
Verification, Johannes Kepler University, 2011.

[3] ESPRESSO(5OCTTOOLS) Manual Page. https://ultraespresso.
di.univr.it/assets/data/espresso/espresso5.pdf.

[4] Olivier Coudert. “Two-level logic minimization: an overview”.
In: Integration (1994).

[5] O. Coudert. “On Solving Covering Problems”. In: DAC. 1996.
[6] Goldberg et al. “Negative thinking by incremental problem

solving: application to unate covering”. In: ICCAD. 1997.
[7] Robert K Brayton et al. Logic minimization algorithms for

VLSI synthesis. Vol. 2. 1984.
[8] R. L. Rudell and A. Sangiovanni-Vincentelli. “Multiple-Valued

Minimization for PLA Optimization”. In: IEEE TCAD (1987).
[9] P. C. McGeer et al. “ESPRESSO-SIGNATURE: a new exact

minimizer for logic functions”. In: IEEE TVLSI (1993).
[10] J. Hlavicka and P. Fiser. “BOOM-a heuristic Boolean mini-

mizer”. In: ICCAD. 2001.
[11] S. Chatterjee. “Learning and memorization”. In: ICML. 2018.
[12] Saeyang Yang. Logic synthesis and optimization benchmarks

user guide: version 3.0. Microelectronics Center of North
Carolina (MCNC), 1991.

[13] Yann LeCun and Corinna Cortes. “MNIST handwritten digit
database”. In: (2010).

[14] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple
layers of features from tiny images”. In: (2009).

[15] Mark Hall et al. “The WEKA Data Mining Software: An
Update”. In: SIGKDD Explor. Newsl. (2009).

[16] Giulia Pagallo and David Haussler. “Boolean Feature Discovery
in Empirical Learning”. In: Machine Learning (1990).

[17] Arlindo L. Oliveira and Alberto Sangiovanni-Vincentelli.
“Learning Complex Boolean Functions: Algorithms and Appli-
cations”. In: NeurIPS. 1993.

[18] Song Han et al. “Learning Both Weights and Connections for
Efficient Neural Networks”. In: NeurIPS. 2015.

[19] Yoav Freund and Robert E. Schapire. “A Decision-Theoretic
Generalization of On-Line Learning and an Application to
Boosting”. In: JCSS (1997).

[20] Leo Breiman. “Random Forests”. In: Machine Learning (2001),
pp. 5–32.

[21] Weiyu Cheng, Yanyan Shen, and Linpeng Huang. “Adaptive
Factorization Network: Learning Adaptive-Order Feature Inter-
actions”. In: Proc. AAAI. 2020.

[22] Fabian Pedregosa et al. “Scikit-learn: Machine learning in
Python”. In: JMLR (2011).

[23] Benjamin Doerr and Carola Doerr. “Optimal parameter choices
through self-adjustment: Applying the 1/5-th rule in discrete
settings”. In: ACGEC. 2015.

[24] R. G. Rizzo, V. Tenace, and A. Calimera. “Multiplication by
Inference using Classification Trees: A Case-Study Analysis”.
In: ISCAS. 2018.

https://ultraespresso.di.univr.it/assets/data/espresso/espresso5.pdf
https://ultraespresso.di.univr.it/assets/data/espresso/espresso5.pdf

APPENDIX
The detailed version of approaches adopted by indi-

vidual teams are described below.

I. TEAM 1
Authors: Yukio Miyasaka, Xinpei Zhang, Mingfei Yu,

Qingyang Yi, Masahiro Fujita, The University of Tokyo,
Japan and University of California, Berkeley, USA

A. Learning Methods
We tried ESPRESSO, LUT network, and Random

forests. ESPRESSO will work well if the underlying
function is small as a 2-level logic. On the other hand,
LUT network has a multi-level structure and seems good
for the function which is small as a multi-level logic.
Random forests also support multi-level logic based on
a tree structure.

ESPRESSO is used with an option to finish optimiza-
tion after the first irredundant operation. LUT network
has some parameters: the number of levels, the number
of LUTs in each level, and the size of each LUT. These
parameters are incremented like a beam search as long
as the accuracy is improved. The number of estimators
in Random forests is explored from 4 to 16.

If the number of AIG nodes exceeds the limit (5000),
a simple approximation method is applied to the AIG.
The AIG is simulated with thousands of random input
patterns, and the node which most frequently outputs
0 is replaced by constant-0 while taking the negation
(replacing with constant-1) into account. This is repeated
until the AIG size meets the condition. To avoid the result
being constant 0 or 1, the nodes near the outputs are
excluded from the candidates by setting a threshold on
level. The threshold is explored through try and error.

B. Preliminary Experiment
We conducted a simple experiment. The parameters of

LUT was fixed as follows: the number of levels was 8,
the number of LUTs in a level was 1028, and the size of
each LUT was 4. The number of estimators in Random
forests was 8. The test accuracy and the AIG size of the
methods is shown at Fig. 5 and Fig. 6. Generally Random
forests works best, but LUT network works better in a
few cases among case 90-99. All methods failed to learn
case 0, 2, 4, 6, 8, 20, 22, 24, 26, 28, and 40-49. The
approximation was applied to AIGs generated by LUT
network and Random forests for these difficult cases and
case 80-99. ESPRESSO always generates a small AIG
with less than 5000 nodes as it conforms to less than ten
thousands of min-terms.

The effect of approximation of the AIGs generated by
LUT network is shown at Fig. 7. For difficult cases, the
accuracy was originally around 50%. For case 80-99, the
accuracy drops at most 5% while reducing 3000-5000
nodes. Similar thing was observed in the AIGs generated
by Random forests.

C. Pre-defined standard function matching
The most important method in the contest was actually

matching with a pre-defined standard functions. There
are difficult cases where all of the methods above fail to
get meaningful accuracy. We analyzed these test cases
by sorting input patterns and was able to find adders,
multipliers, and square rooters fortunately because the

inputs of test cases are ordered regularly from LSB
to MSB for each word. Nevertheless, it seems almost
impossible to realize significantly accurate multiplier and
square rooters with more than 100 inputs within 5000
AIG nodes.

D. Exploration After The Contest
1) Binary Decision Tree: We examined BDT (Binary

Decision Tree), inspired by the methods of other teams.
Our target is the second MSB of adder because only BDT
was able to learn the second MSB of adder with more
than 90% accuracy according to the presentation of the
3rd place team. In normal BDT, case-splitting by adding a
new node is performed based on the entropy gain. On the
other hand, in their method, when the best entropy gain
is less than a threshold, the number of patterns where the
negation of the input causes the output to be negated too
is counted for each input, and case-splitting is performed
at the input which has such patterns the most.

First of all, the 3rd team’s tree construction highly
depends on the order of inputs. Even in the smallest
adder (16-bit adder, case 0), there is no pattern such that
the pattern with an input negated is also included in the
given set of patterns. Their program just chooses the last
input in such case and fortunately works in the contest
benchmark, where the last input is the MSB of one input
word. However, if the MSB is not selected at first, the
accuracy dramatically drops. When we sort the inputs at
random, the accuracy was 59% on average of 10 times.

Next, we tried SHAP analysis [1] on top of XGBoost,
based on the method of the 2nd place team, to find out the
MSBs of input-words. The SHAP analysis successfully
identifies the MSBs for a 16-bit adder, but not that for a
larger adder (32-bit adder, case 2).

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

ac
cu

ra
cy

benchmark
ESPRESSO

LUTNetwork
RandomForest

Fig. 5: The test accuracy of the methods

In conclusion, it is almost impossible for BDT to learn
32-bit or larger adders with random input order. If the
problem provides a black box simulator as in ICCAD
contest 2019 problem A [2], we may be able to know
the MSBs by simulating one-bit flipped patterns, such as
one-hot patterns following an all-zero pattern. Another
mention is that BDT cannot learn a large XOR (16-XOR,
case 74). This is because the patterns are divided into two
parts after each case-splitting and the entropy becomes
zero at a shallow level. So, BDT cannot learn a deep
adder tree (adder with more than 2 input-words), much
less multipliers.

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50 60 70 80 90 100

A
IG

 n
o

d
e
s

benchmark

ESPRESSO

LUTNetwork

RandomForest

Fig. 6: The resulting AIG size of the methods

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100
 0

 2000

 4000

 6000

 8000

 10000

 12000

ac
cu

ra
cy

A
IG

 n
o
d
es

benchmark
LUTNetwork

LUTNetwork-Original
SizeOfLUTNetwork

SizeOfLUTNetwork-Original

Fig. 7: The test accuracy and AIG size of LUT network before
and after approximation

2) Binary Decision Diagram: We also tried BDD
(Binary Decision Diagram) to learn adder. BDD mini-
mization using don’t cares [3] is applied to the BDD
of the given on-set. Given an on-set and a care-set, we
traverse the BDD of on-set while replacing a node by its
child if the other child is don’t care (one-sided matching),
by an intersection of two children if possible (two-sided
matching), or by an intersection between a complemented
child and the other child if possible (complemented
two-sided matching). Unlike BDT, BDD can learn a
large XOR up to 24-XOR (using 6400 patterns) because
patterns are shared where nodes are shared.

BDD was able to learn the second MSB of adder tree
only if the inputs are sorted from MSB to LSB mixing all
input-words (the MSB of the first word, the MSB of the
second word, the MSB of the third word, ..., the MSB of
the last word, the second MSB of the first word, ...). For
normal adder (2 words), one-sided matching achieved
98% accuracy. The accuracy was almost the same among
any bit-width because the top dozens of bits control the
output. For 4-word adder tree, one-sided matching got
around 80% accuracy, while two-sided matching using a
threshold on the gain of substitution achieved around 90%
accuracy. Note that naive two-sided matching fails (gets
50% accuracy). Furthermore, a level-based minimization,
where nodes in the same level are merged if the gain

does not exceed the threshold, achieved more than 95%
accuracy. These accuracy on 4-word adder tree is high
compared to BDT, whose accuracy was only 60% even
with the best ordering.

For 6-word adder tree, the accuracy of the level-based
method was around 80%. We came up with another
heuristic that if both straight two-sided matching and
complemented two-sided matching are available, the one
with the smaller gain is used, under a bias of 100 nodes
on the complemented matching This heuristic increased
the accuracy of the level-based method to be 85-90%.
However, none of the methods above obtained meaningful
(more than 50%) accuracy for 8-word adder tree.

We conclude that BDD can learn a function if the
BDD of its underlying function is small under some
input order and we know that order. The main reason for
minimization failure is that merging inappropriate nodes
is mistakenly performed due to a lack of contradictory
patterns. Our heuristics prevent it to some degree. If
we have a black box simulator, simulating patterns
to distinguish straight and complemented two-sided
matching would be helpful. Reordering using don’t cares
is another topic to explore.

II. TEAM 2
Authors: Guilherme Barbosa Manske, Matheus

Ferreira Pontes, Leomar Soares da Rosa Junior,
Marilton Sanchotene de Aguiar, Paulo Francisco Butzen,
Universidade Federal de Pelotas, Universidade Federal
do Rio Grande do Sul, Brazil

A. Proposed solution
Our solution is a mix of two machine learning

techniques, J48 [4] and PART [5]. We will first present a
general overview of our solution. Then we will focus on
individual machine learning classifier techniques. Finally,
we present the largest difference that we have found
between both strategies, showing the importance of
exploring more than only one solution.

The flowchart in Fig. 8 illustrates our overall solution.
The first step was to convert the PLA structure into one
that Weka [6] could interpret. We decided to use the
ARFF structure due to how the structure of attributes and
classes is arranged.

Fig. 8: Solution’s flowchart.

After converting to ARFF, as shown in the flowchart’s
second block, the J48 and PART algorithms are executed.
In this stage of the process, the confidence factor is varied
in five values (0.001, 0.01, 0.1, 0.25, and 0.5) for each
algorithm. In total, this step will generate ten results.
The statistics extracted from cross-validation were used
to determine the best classifier and the best confidence
factor.

This dynamic selection between the two classifiers
and confidence factors was necessary since a common

configuration was not found for all the examples provided
in the IWLS Contest. After selecting the best classifier
and the best confidence factor, six new configurations are
performed. At this point, the parameter to be varied is
the minimum number of instances per sheet, that is, the
Weka parameter ”-M”. The minimum number of instances
per sheet was defined (0, 1, 3, 4, 5, and 10). Again, the
selection criterion was the result of the cross-validation
statistic.

1) J48: Algorithms for constructing decision trees are
among the most well known and widely used machine
learning methods. With decision trees, we can classify
instances by sorting them based on feature values. We
classify the samples starting at the root node and sorted
based on their feature values so that in each node, we
represent a feature in an example to be classified, and each
branch represents a value that the node can assume. In the
machine learning community, J. Ross Quinlan’s ID3 and
its successor, C4.5 [4], are the most used decision tree
algorithms. J48 is an open-source Java implementation
of the C4.5 decision tree algorithm in Weka.

The J48 classifier output is a decision tree, which we
transform into a new PLA file. First, we go through the
tree until we reach a leaf node, saving all internal nodes’
values in a vector. When we get to the leaf node, we use
the vector data to write a line of the PLA file. After, we
read the next node, and the amount of data that we keep
in the vector depends on the height of this new node.

Our software keeps going through the tree until the
end of the J48 file, and then it finishes the PLA file
writing the metadata. Finally, we use the ABC tool to
create the AIG file, using the PLA file that our software
has created.

In Fig. 9, we show an example of how our software
works. Fig. 9 (a) shows a decision tree (J48 output) with
7 nodes, 4 of which are leaves. Fig. 9 (b) shows the PLA
file generated by our software. The PLA file has 1 line
for every leaf in the tree. Fig. 9 (c) shows the pseudocode
j48topla, where n control the data in the vector and x is
the node read in the line.

Fig. 9: (a) Decision tree (J48 output), (b) PLA file generated
by our software and (c) pseudocode j48topla.

2) PART: In the PART algorithm [5], we can infer
rules generating partial decision trees. Thus two major
paradigms for rule generation are combined: creating
rules from decision trees and the separate-and-conquer
rule learning technique. Once we build a partial tree,
we extract a single rule from it, and for this reason, the
PART algorithm avoids post-processing.

The PART classifier’s output is a set of rules, which
checks from the first to the last rule to define the output

for a given input. We transform this set of rules in an
AAG file, and to follow the order of the rules, we have
created a circuit that guarantees this order. Each rule is
an AND logic gate with a varied number of inputs.

First, we go through the PART file and create all the
rules (ANDs), inverting the inputs that are 0. We need
to save the values and positions of all rules in a data
structure. After, we read this data structure, connecting
all the outputs. If a rule makes the output goes to 1,
we add an OR logic gate to connect with the rest of
the rules. If a rule makes the output goes to 0, we add
an AND logic gate, with an inverter in the first input.
These guarantees that the first correct rule will define the
output. Finally, we use the AIGER [7] library to convert
the created AAG to AIG.

In Fig. 10, we can see how this circuit is cre-
ated. Fig. 10(a) shows a set of rules (PART file) with four
rules, where a blank line separates each rule. Fig. 10 (b)
shows the circuit created with this set of rules.

Fig. 10: (a) Set of rules (PART file) and (b) circuit created
with this set of rules.

B. Results
Fig. 11 shows the accuracy of the ten functions that

varied the most between the J48 and PART classifiers.
We compared the best result of J48 and the best result
of PART with the Weka parameter ”-M” fixed in 2. The
biggest difference happened in circuit 29, with J48 getting
69.74% of accuracy and PART 99.27%, resulting in a
difference of 29.52%.

Most of the functions got similar accuracy for both
classifiers. The average accuracy of the J48 classifier
was 83.50%, while the average accuracy of the PART
classifier was 84.53%, a difference of a little over 1%.
After optimizing all the parameters in the Weka tool, we
got an average accuracy of 85.73%. All accuracy values
were obtained with cross-validation.

In Fig. 12, we compare the number of ANDs in the
AIG in the same ten functions. The interesting point
observed in this plot refers to circuits 43, 51, and 52.
The better accuracy for these circuits is obtained through
the J48 classifier, while the resulting AIG is smaller than
the ones created from PART solution. The complementary
behavior is observed in circuits 4, and 75. This behavior
reinforces the needed for diversification in machine
learning classifiers.

Fig. 13: Fringe DT learning flow.

Fig. 14: 12 fringe patterns.

Fig. 11: Accuracy of the ten functions that had the biggest
difference in accuracy between J48 and PART classifiers.The
10 functions are 0, 2, 4, 6, 27, 29, 43, 51, 52 and 75

Fig. 12: Number of ANDs in ten functions used in Fig. 11.

III. TEAM 3
Authors: Po-Chun Chien, Yu-Shan Huang, Hoa-Ren

Wang, and Jie-Hong R. Jiang, Graduate Institute of
Electronics Engineering, Department of Electrical
Engineering, National Taiwan University, Taipei, Taiwan

Team 3’s solution consists of decision tree (DT) based
and neural network (NN) based methods. For each
benchmark, multiple models are generated and 3 are
selected for ensemble.

A. DT-based method
For the DT-based method, the fringe feature extraction

process proposed in [8, 9] is adopted. The overall learning
procedure is depicted in Fig. 13. The DT is trained and
modified for multiple iterations. In each iteration, the
patterns near the fringes (leave nodes) of the DT are
identified as the composite features of 2 decision variables.
As illustrated in Fig. 14, 12 different fringe patterns
can be recognized, each of which is the combination of
2 decision variables under various Boolean operations.
These newly detected features are then added to the list
of decision variables for the DT training in the next
iteration. The procedure terminates when there are no
new features found or the number of the extracted features
exceeds the preset limit. After training, the DT model
can be synthesized into a MUX-tree in a straightforward
manner, which will not be covered in detail in the paper.

B. NN-based method
For the NN-based method, a 3-layer network is

employed, where each layer is fully-connected and uses
sigmoid(σ) as the activation function. As the synthesized
circuit size of a typical NN could be quite large, the
connection pruning technique proposed in [10] is adopted
in order to meet the stringent size restriction. Network
pruning is an iterative process. In each iteration, a portion
of unimportant connections (the ones with weights close
to 0) are discarded and the network is then retrained to
recover its accuracy. The NN is pruned until the number
of fanins of each neuron is at most 12. To synthesize the
network into a logic circuit, an alternative can be done
by utilizing the arithmetic modules, such as adders and
multipliers, for the intended computation. Nevertheless,
the synthesized circuit size can easily exceed the limit
due to the high complexity of the arithmetic units. Instead,
each neuron in the NN is converted into a LUT by
rounding and quantizing its activation. Fig. 15 shows an
example transformation of a neuron into a LUT, where
all possible input assignments are enumerated, and the
neuron output is quantized to 0 or 1 as the LUT output
under each assignment. The synthesis of the network can
be done quite fast, despite the exponential growth of the
enumeration step, since the number of fanins of each
neuron has been restricted to a reasonable size during the
previous pruning step. The resulting NN after pruning
and synthesis has a structure similar to the LUT-network
in [11], where, however, the connections were assigned
randomly instead of learned iteratively.

Fig. 16: Test accuracy of each benchmark by different methods.

Fig. 17: Circuit size of each benchmark by different methods.

Fig. 15: Neuron to LUT transformation.

C. Model ensemble
The overall dataset, training and validation set com-

bined, of each benchmark is re-divided into 3 partitions
before training. Two partitions are selected as the new
training set, and the remaining one as the new validation
set, resulting in 3 different grouping configurations. Under
each configuration, multiple models are trained with
different methods and hyper-parameters, and the one with
the highest validation accuracy is chosen for ensemble.
Therefore, the obtained circuit is a voting ensemble of 3
distinct models. If the circuit size exceeds the limit, the
largest model is then removed and re-selected from its
corresponding configuration.

D. Experimental results
The DT-based and NN-based methods were imple-

mented with scikit-learn [12] and PyTorch [13],
respectively. After synthesis of each model, the circuit
was then passed down to ABC [14] for optimization. Both
methods were evaluated on the 100 benchmarks provided
by the contest.

Table IV summarizes the experimental results. The first
column lists various methods under examination, where
Fr-DT and DT correspond to the DT-based method with
or without fringe feature extraction, NN correspond to
the NN-based method, LUT-Net is the learning procedure
proposed in [11], and ensemble is the combination of
Fr-DT, DT and NN. The remaining columns of Table IV
specify the average training, validation and testing accu-
racies along with the circuit sizes (in terms of the number
of AIG nodes) of the 100 benchmarks. Fig. 16 and 17
plot the testing accuracy and circuit size of each case,
where different methods are marked in different colors.

Table IV: Summary of experimental results.

method avg. train acc. avg. valid acc. avg. test acc. avg. size
DT 90.41% 80.33% 80.15% 303.90

Fr-DT 92.47% 85.37% 85.23% 241.47
NN 82.64% 80.91% 80.90% 10981.38

LUT-Net [11] 98.37% 72.78% 72.68% 64004.39
ensemble - - 87.25% 1550.33

Fr-DT performed the best of the 4 methods under
comparison. It increased the average testing accuracy by
over 5% when compared to the ordinary DT, and even
attained circuit size reduction. Fr-DT could successfully
identify and discover the important features of each
benchmark. Therefore, by adding the composite features
into the variable list, more branching options are provided
and thus the tree has the potential to create a better
split during the training step. On the other hand, even
though NN could achieved a slightly higher accuracy
than DT on average, its circuit size exceeded the limit in
75 cases, which is undesirable. When comparing NN to
LUT-Net, which was built in a way so that it had the same
number of LUTs and average number of connections as
NN, NN clearly has an edge. The major difference of
NN and LUT-Net exists in the way they connect LUTs
from consecutive layers, the former learn the connections
iteratively from a fully-connected network, whereas the
latter assign them randomly. Moreover, Table V shows
the accuracy degradation of NN after connection pruning
and neuron-to-LUT conversion. It remains future work to
mitigate this non-negligible ∼2% accuracy drop. Finally,
by ensemble, models with the highest testing accuracies
could be obtained.

Table V: Accuracy degradation of NN after pruning and
synthesis.

NN config. avg. train acc. avg. valid acc. avg. test acc.

initial 87.30% 83.14% 82.87%
after pruning 89.06% 82.60% 81.88%
after synthesis 82.64% 80.91% 80.90%

Of the 300 selected models during ensemble, Fr-
DT and ordinary DT account for 80.3% and 16.0%,

N-dimensional
 Training dataset

(1) Multi-Level
Feature Selection

(2) Sparse Feature Learning
via AFN

Lower imp.

(3) Inference with Sub-space
Expansion

0000
0001
0010

1111
...

AFN

... 1

0000
0001
0010

1111
...

AFN

... 1

--0000 1
--0001 0
--0010 0
--0011 1
...
--1111 1

.pla

CrossValidation

(4) Node Constrained AIG Search

Synth.

--0000 1
--0001 0
--0010 0
--0011 1
...
--1111 1

.pla
(i) mltest

.aig
(i)
.aig
(i)

>5000

<=5000 and high acc.

Next best
pla <= 5000

and low
acc.

Resplit data
go to (1)

done

Fig. 18: Deep-learning-based Boolean function approximation
framework.

1 0

1

0

0

Sparsely
Sampled Space

DON’T CARE

Fig. 19: Smoothness assumption in the sparse high-dimensional
Boolean space.

respectively, with NN taking up the remaining 3.7%.
As expected, the best-performing Fr-DT models are in
the majority. It seems that the DT-based method is better-
suited for this learning task. However, there were several
cases, such as case 75 where NN achieved 89.97% testing
accuracy over Fr-DT’s 87.38%, with an acceptable circuit
size (2320 AIG nodes).

E. Take-Away
Team 3 adopted DT-based and NN-based methods

to tackle the problem of learning an unknown Boolean
function. The team ranked 4 in terms of testing accuracy
among all the contestants of the IWLS 2020 programming
contest. From the experimental evaluation, the approach
that utilized decision tree with fringe feature extraction
could achieve the highest accuracy with the lowest circuit
size in average. This approach is well-suited for this
problem and can generate a good solution for almost
every benchmark, regardless of its origin.

IV. TEAM4
Authors: Jiaqi Gu, Zheng Zhao, Zixuan Jiang,

David Z. Pan, Department of Electrical and Computer
Engineering, University of Texas at Austin, USA

A. Deep-Learning-Based Boolean Function Approxima-
tion

Given the universal approximation theorem, neural
networks can be used to fit arbitrarily complex functions.
For example, multi-layer perceptrons (MLPs) with enough
width and depth are capable to learn the most non-smooth
binary function in the high-dimensional hypercube, i.e.,
XNOR or XOR [15]. For this contest, we adopt a
deep-learning-based method to learn an unknown high-
dimensional Boolean function with 5k node constraints
and extremely-limited training data, formulated as fol-
lows,

min L(W ;Dtrn), (1)
s.t. N (AIG(W)) ≤ 5, 000,

where L(W,Dtrn) is the binary classification loss func-
tion on the training set, N (AIG(W)) is the num-
ber of node of the synthesized AIG representation
based on the learned model. To solve this constrained
stochastic optimization, we adopt the following tech-
niques, 1) multi-level ensemble-based feature selection,
2) recommendation-network-based model training, 3)
subspace-expansion-based prediction, and 4) accuracy-
node joint exploration during synthesis. The framework
is shown in Fig. 18. We demonstrate the test result and
give an analysis to show our performance on the 100
public benchmarks.

B. Feature Selection with Multi-Level Model Ensemble
The first critical step for this learning task is to perform

data pre-processing and feature engineering. The public
100 benchmarks have very unbalanced input dimensions,
ranging from 10 to over 700, but the training dataset
merely has 6,400 examples per benchmark, which gives
an inadequate sampling of the true distribution. We
also observe that a naive AIG representation directly
synthesized from the given product terms has orders-
of-magnitude more AND gates than the 5,000 node
constraint. The number of AND gate after node optimiza-
tion of the synthesizer highly depends on the selection
of don’t-care set. Therefore, we make a smoothness
assumption in the sparse high-dimensional hypercube
that any binary input combinations that are not explicitly
described in the PLA file are set to don’t-care state, such
that the synthesizer has enough optimization space to cut
down the circuit scale, shown in Fig. 19.

Based on this smoothness assumption, we perform
input dimension reduction to prune the Boolean space
by multi-level feature selection. Since we have 6,400
randomly sampled examples for each benchmark, we
assume the training set is enough to recover the true
functionality of circuits with less than blog2 6, 400c = 12
inputs and do not perform dimension reduction on those
benchmarks. For benchmarks with more than 13 inputs,
we empirically pre-define a feature dimension d ranging
from 10 to 16, which is appropriate to cover enough
optimization space under accuracy and node constraints.
For each dimension d, we first perform the first level
of feature selection by pre-training a machine learning
model ensemble.

Given the good interpretability and generalization,
traditional machine learning models are widely used in

#
N

o
d

e (k)

0

1000

2000

3000

4000

5000

50

60

70

80

90

100

e
x
0
0

e
x
0
4

e
x
0
8

e
x
1

2

e
x
1
6

e
x
2
0

e
x
2
4

e
x
2
8

e
x
3
2

e
x
3
6

e
x
4
0

e
x
4
4

e
x
4

8

e
x
5
2

e
x
5
6

e
x
6
0

e
x
6
4

e
x
6
8

e
x
7
2

e
x
7
6

e
x
8
0

e
x
8

4

e
x
8
8

e
x
9
2

e
x
9
6

#
N

o
d
e

A
c
c
u
ra

c
y
 (

%
)

Validation Acc. (%) #Node

0

1000

2000

3000

4000

5000

50

60

70

80

90

100

e
x
0
0

e
x
0
4

e
x
0
8

e
x
1

2

e
x
1
6

e
x
2
0

e
x
2
4

e
x
2
8

e
x
3
2

e
x
3
6

e
x
4
0

e
x
4
4

e
x
4

8

e
x
5
2

e
x
5
6

e
x
6
0

e
x
6
4

e
x
6
8

e
x
7
2

e
x
7
6

e
x
8
0

e
x
8

4

e
x
8
8

e
x
9
2

e
x
9
6

#
N

o
d
e

A
c
c
u
ra

c
y
 (

%
)

Validation Acc. (%) #Node

0

1000

2000

3000

4000

5000

6000

50

60

70

80

90

100

e
x
0
0

e
x
0
4

e
x
0
8

e
x
1
2

e
x
1
6

e
x
2

0

e
x
2
4

e
x
2
8

e
x
3
2

e
x
3
6

e
x
4

0

e
x
4
4

e
x
4
8

e
x
5
2

e
x
5
6

e
x
6
0

e
x
6
4

e
x
6
8

e
x
7
2

e
x
7
6

e
x
8
0

e
x
8
4

e
x
8

8

e
x
9
2

e
x
9
6

#
N

o
d
e

A
c
c
u

ra
c
y
 (

%
)

Validation Acc. (%) #Node

Fig. 21: Evaluation results on IWLS 2020 benchmarks.

d to 10 embedding

LNN 128

Exponential & Concatenation

FC-80 + Dropout-0.5

FC-64 + Dropout-0.5

FC-64 + Dropout-0.4

Logarithmic Transform

Input Sparse Boolean Feature
...

Sparse Feature
Embedding

Logarithmic NN

MLP Classifier

Binary Output

Fig. 20: AFN [18] and configurations used for Boolean function
approximation.

feature engineering to evaluate the feature importance.
We pre-train an AdaBoost [16] ensemble classifier
with 100 ExtraTree sub-classifier on the training
set to generate the importance score for all features.
Then we perform permutation importance ranking [17]
for 10 times to select the top-d important features as
the care set variables F 1(d). Given that the ultimate
accuracy is sensitive to the feature selection, we generate
another feature group at the second level to expand the
search space. At the second level, we train two classifier
ensembles, one is an XGB classifier with 200 sub-trees
and another is a 100-ExtraTree based AdaBoost
classifier. Besides, a stratified 10-fold cross-validation is
used to select top-d important features F 2(d) based on
the average scores from the above two models. The entire
14 candidates of input feature groups for each benchmark
are F = {F 1(d), F 2(d)}16d=10.

1) Deep Learning in the Sparse High-Dimensional
Boolean Space: This learning problem is different from
continuous-space learning tasks, e.g., time-sequence-
prediction, computer vision-related tasks, since its inputs
are binarized with poor smoothness, which means high-
frequency patterns in the input features are important to
the model prediction, e.g., XNOR and XOR. Besides, the
extremely-limited training set gives an under-sampling
of the real distribution, such that a simple multi-layer
perceptron is barely capable of fitting the dataset while
still having good generalization. Therefore, motivated by

a similar problem, the recommendation system design
which targets at predicting the click rate based on
dense and sparse features, we adopt a state-of-the-art
recommendation model, adaptive factorization network
(AFN) [18], to fit the sparse Boolean dataset. Fig. 20
demonstrates the AFN structure and network configuration
we use to fit the Boolean dataset. The embedding layer
maps the high-dimensional Boolean feature to a 10-d
space and transform the sparse feature with a logarithmic
transformation layer. In the logarithmic neural network,
multiple vector-wise logarithmic neurons are constructed
to represent any cross features to obtain different higher-
order input combinations [18],

yj = exp
(m∑

i=1

wij ln(Embed(F (d)))
)
. (2)

Three small-scale fully-connected layers are used to
combine and transform the crossed features after log-
arithmic transformation layers. Dropout layers after each
hidden layers are used to during training to improve the
generalization on the unknown don’t-care set.

2) Inference with Sub-Space Expansion: After training
the AFN-based function approximator, we need to gener-
ate the dot-product terms in the PLA file and synthesize
the AIG representation. Since we ignore all pruned input
dimension, we only assume our model can generalize in
the reduced d-dimensional hypercube. Hence, we predict
all 2d input combinations with our trained approximator,
and set all other pruned inputs to don’t-care state. On 14
different feature groups F , we trained 14 different models
{AFN0, · · · ,AFNd, · · · }, sorted in a descending order in
terms of validation accuracy. With the above 14 models,
we predict 14 corresponding PLA files {P0, · · · ,Pd. · · · }
with sub-space expansion to maximize the accuracy in
our target space while minimizing the node count by
pruning all other product terms, shown in Fig. 18. In the
ABC [19] tool, we use the node optimization command
sequence as resyn2, resyn2a, resyn3, resyn2rs,
and compress2rs.

3) Accuracy-Node Joint Search with ABC: For each
benchmark, we obtain multiple predicted PLA files to
be selected based on the node constraints. We search
the PLA with the best accuracy that meets the node
constraints,

P∗ = argmax
P∼{··· ,Pd,··· }

Acc(AIG(P),Dval), (3)

s.t. N (AIG(P)) ≤ 5, 000.

If the accuracy is still very low, e.g., 60%, we resplit the
dataset Dtrn and Dval and go to step (1) again in Fig. 18.

4) Results and Analysis: Fig. 21 shows our validation
accuracy and number of node after node optimization.
Our model achieves high accuracy on most benchmarks.
While on certain cases regardless of the input count, our
model fails to achieve a desired accuracy. An intuitive
explanation is that the feature-pruning-based dimension
reduction is sensitive on the feature selection. A repeating
procedure by re-splitting the dataset may help find a good
feature combination to improve accuracy.

C. Conclusion and Future Work
We introduce the detailed framework we use to learn

the high-dimensional unknown Boolean function for

Train. set

Valid. set
Merge sets

Obtain
proportions

Generate new
train. and
valid. sets

Train DTs/RFs

Train NN Get important
features

Generate
EQN/AIG

Reduce Node
and Logic

Level
AIG

Evaluation

AIG with
highest

accuracy within
5000-AND limit

Generate
SOP

Fig. 22: Design flow employed in this proposal.

IWLS’20 contest. Our recommendation system based
model achieves a top 3 smallest generalization gap on
the test set (0.48%), which is a suitable selection for this
task. A future direction is to combine more networks and
explore the unique characteristic of various benchmarks.

V. TEAM 5
Authors: Brunno Alves de Abreu, Isac de Souza

Campos, Augusto Berndt, Cristina Meinhardt,
Jonata Tyska Carvalho, Mateus Grellert and Sergio
Bampi, Universidade Federal do Rio Grande do Sul,
Universidade Federal de Santa Catarina, Brazil

Fig. 22 presents the process employed in this proposal.
In the first stage, the training and valid sets provided in the
problem description are merged. The ratios of 0’s and 1’s
in the output of the newly merged set are calculated, and
we split the set into two new training and validation sets,
considering an 80%-20% ratio, respectively, preserving
the output variable distribution. Additionally, a second
training set is generated, equivalent to half of the
previously generated training set. These two training
sets are used separately in our training process, and their
accuracy results are calculated using the same validation
set to enhance our search for the best models. This was
done because the model with the training set containing
80% of the entire set could potentially lead to models
with overfitting issues, so using another set with 40% of
the entire provided set could serve as an alternative.

After the data sets are prepared, we train the DTs
and RFs models. Every decision model in this proposal
uses the structures and methods from the Scikit-learn
Python library. The DTs and RFs from this library use
the Classification and Regression Trees (CART) algorithm
to assemble the tree-based decision tools [20]. To train
the DT, we use the DecisionTreeClassifier structure,
limiting its max depth hyper-parameter to values of 10
and 20 due to the 5000-gate limitation of the contest. The
RF model was trained similarly, but with an ensemble
of DecisionTreeClassifier: we opted not to employ
the RandomForestClassifier structure given that it
applied a weighted average of the preliminary decisions
of each DT within it. Considering that this would require
the use of multipliers, and this would not be suitable to
obtain a Sum-Of-Products (SOP) equivalent expression,
using several instances of the DecisionTreeClassifier
with a simple majority voter in the output was the choice
we adopted. In this case, each DT was trained with a
random subset of the total number of features. Based

on preliminary testing, we found that RFs could not
scale due to the contest’s 5000-gate limitation. This was
mainly due to the use of the majority voting, considering
that the preliminaries expressions for that are too large
to be combined between each other. Therefore, for this
proposal, we opted to limit the number of trees used in
the RFs to a value of three.

Other parameters in the DecisionTreeClassifier
could be varied as well, such as the split metric, by
changing the Gini metric to Entropy. However, prelimi-
nary analyses showed that both metrics led to very similar
results. Since Gini was slightly better in most scenarios
and is also less computationally expensive, it was chosen.

Even though timing was not a limitation described
by the contest, we still had to provide a solution that
we could verify that was yielding the same AIGs as
the ones submitted. Therefore, for every configuration
tested, we had to test every example given in the problem.
Hence, even though higher depths could be used without
surpassing the 5000-gate limitation, we opted for 10 and
20 only, so that we could evaluate every example in a
feasible time.

Besides training the DTs and RFs with varying depths,
we also considered using feature selection methods
from the Scikit-learn library. We opted for the use
of the SelectKBest and SelectPercentile methods.
These methods perform a pre-processing in the features,
eliminating some of them prior to the training stage.
The SelectKBest method selects features according to
the k highest scores, based on a score function, namely
f classif , mutual info classif or chi2, according to
the Scikit-learn library [12]. The SelectPercentile is
similar but selects features within a percentile range given
as parameter, based on the same score functions [12].
We used the values of 0.25, 0.5, and 0.75 for k, and the
percentiles considered were 25%, 50%, and 75%.

The solution employing neural networks (NNs) was
considered after obtaining the accuracy results for the
DTs/RFs configurations. In this case, we train the model
using the MLPClassifier structure, to which we used
the default values for every parameter. Considering that
NNs present an activation function in the output, which
is non-linear, the translation to a SOP would not be
possible using conventional NNs. Therefore, this solution
only uses the NNs to obtain a subset of features based
on their importance, i.e., select the set of features with
the corresponding highest weights. With this subset of
features obtained, we evaluate combinations of functions,
using ”OR,” ”AND,” ”XOR,” and ”NOT” operations
among them. Due to the fact that the combinations of
functions would not scale well, in terms of time, with the
number of features, we limit the sub-set to contain only
four features. The number of expressions evaluated for
each NN model trained was 792. This part of the proposal
was mainly considered given the difficulty of DTs/RFs
in finding trivial solutions for XOR problems. Despite
solving the problems from specific examples whose
solution was a XOR2 between two of the inputs, with
a 100% accuracy, we were able to slightly increase the
maximum accuracy of other examples through this scan of
functions. The parameters used by the MLPClassifier
were the default ones: 100 hidden layers and ReLu
activation function [12].

The translation from the DT/RF to SOP was imple-
mented as follows: the program recursively passes through

every tree path, concatenating every comparison. When
it moves to the left child, this is equivalent to a ”true”
result in the comparison. In the right child, we need a
”NOT” operator in the expression as well. In a single
path to a leaf node, the comparisons are joined through
an ”AND” operation, given that the leaf node result will
only be true when all the comparisons conditions are true.
However, given that this is a binary problem, we only
consider the ”AND” expression of a path when the leaf
leads to a value of 1. After that, we perform an ”OR”
operation between the ”AND” expressions obtained for
each path, which yields the final expression of that DT.

The RF scenario works the same way, but it considers
the expression required for the majority gate as well,
whose inputs are the ”OR” expressions of each DT.

From the SOP, we obtain the AIG file. The generated
AIG file is then optimized using commands of the ABC
tool [14] attempting to reduce the number of AIG nodes
and the number of logic levels by performing iterative
collapsing and refactoring of logic cones in the AIG, and
rewrite operations. Even if these commands could be
iteratively executed, we decided to run them only once
given that the 5000-gate limitation was not a significant
issue for our best solutions, and a single sequence of them
was enough for our solutions to adhere to the restriction.

Finally, we run the AIG file using the AIG evaluation
commands provided by ABC to collect the desired results
of accuracy, number of nodes, and number of logic levels
for both validation sets generated at the beginning of our
flow.

All experiments were performed three times with
different seed values using the Numpy random
seed method. This was necessary given that the
DecisionTreeClassifier structure has a degree of
randomness. Considering it was used for both DTs and
RFs, this would yield different results at each execution.
The MLPClassifier also inserts randomnesses in the
initialization of weights and biases. Therefore, to ensure
that the contest organizers could perfectly replicate the
code with the same generated AIGs, we fixed the seeds
to values of 0, 1, and 2. Therefore, we evaluated two
classifiers (DTs/RFs), with two maximum depths, two
different proportions, and three different seeds, which
leads to 24 configurations. For each of the SelectKBest
and SelectPercentile methods, considering that we ana-
lyzed three values of K and percentage each, respectively,
along with three scoring functions, we have a total of 18
feature selection methods. Given that we also tested the
models without any feature selection method, we have
19 possible combinations. By multiplying the number
of configurations (24) with the number of combinations
with and without feature selection methods (adding up
to 19), we obtain a total of 456 different DT/RF models
being evaluated. Additionally, each NN, as mentioned,
evaluated 792 expressions. These were also tested with
two different training set proportions and three different
seeds, leading to a total of 4752 expressions for each of
the 100 examples of the contest.

Table VI presents some additional information on the
configurations that presented the best accuracy for the
examples from the contest. As it can be seen, when we
split the 100 examples by the decision tool employed,
most of them obtained the best accuracy results when
using DTs, followed by RFs and NNs, respectively. The
use of RFs was not as significant due to the 5000-gate

limitation, as it restrained us from using a higher number
of trees. The NNs were mainly useful to solve XOR2
problems and in problems whose best accuracy results
from DTs/RFs were close to 50%. It can also be observed
that the use of the feature selection methods along with
DTs/RFs was helpful; therefore, cropping a sub-set of
features based on these methods can definitely improve
the model obtained by the classifiers. The number of best
examples based on the different scoring functions used in
the feature selection methods shows that the chi2 function
was the most useful. This is understandable given that
this is the default function employed by the Scikit-learn
library. Lastly, even though the proportions from 80%-
20% represented the majority of the best results, it can
be seen that running every model with a 40%-20% was
also a useful approach.

Table VI: Number of best examples based on the characteristics
of the configurations.

Characteristic Parameter # of examples
DT 55
RF 28Decision Tool
NN 17

Select K Best 48
Select Percentile 11Feature Selection

None 41
chi2 34

f classif 6
mutual info classif 19Scoring Function

None 41
40%-20% 23

Proportion 80%-20% 77

VI. TEAM 6
Authors: Aditya Lohana, Shubham Rai and Akash Ku-

mar, Chair for Processor Design, Technische Universitaet
Dresden, Germany
To start of with, we read the training pla files using
ABC and get the result of &mltest directly on the train
data. This gives the upper limit of the number of AND
gates which are used. Then, in order to learn the unknown
Boolean function, we have used the method as mentioned
in [11]. We used LUT network as a means to learn from
the known set to synthesize on an unknown set. We
use the concept of memorization and construct a logic
network.

In order to construct the LUT network, we use the
minterms as input features to construct layers of LUTs
with connections starting from the input layer. We then
try out two schemes of connections between the layers:
‘random set of input’ and ‘unique but random set of
inputs’. By ‘random set of inputs’, we imply that we
just randomly select the outputs of preceding layer and
feed it to the next layer. This is the default flow. By
‘unique but random set of inputs’, we mean that we
ensure that all outputs from a preceding layer is used
before duplication of connection. This obviously makes
sense when the number of connections is more than the
number of outputs of the preceding layer.

We have four hyper parameters to experiment with in
order to achieve good accuracy– number of inputs per
LUT, number of LUTS per layers, selection of connecting
edges from the preceding layer to the next layer and the

x1?

x3? 1

1 0

1

1

0

0

(a)

.i 3

.o 1

.p 3

1-- 1

.ilb x1 x2 x3
0-0 1
0-1 0

.e

(b)

Fig. 23: (a) A decision tree and (b) its corresponding PLA.

x1?

x3? +0.3

+0.8 -0.2

1

1

0

0
x2?

x1?

+0.3 -0.5

1

1

0

0

-0.7

x3?

+0.6

10
+ +…

(a)
x1?

x3? 1

1 0

1

1

0

0
x2?

x1?

1 0

1

1

0

0

0

x3?

1

10
+ +…

(b)

Fig. 24: XGBoost of decision trees, (a) before and (b) after
quantization of leaf values. Plus signs mean to add up resulting
leaf values, one from each tree.

depth (number of LUT layers) of the model. We carry
out experiments with varying number of inputs for each
LUT in order to get the maximum accuracy. We notice
from our experiments that 4-input LUTs returns the best
average numbers across the benchmark suite. We also
found that increasing the number of LUTs per layer or
number of layers does not directly increases the accuracy.
This is due to the fact, because increasing the number
of LUTs allows repeatability of connections from the
preceding layer. This leads to passing of just zeros/ones
to the succeeding layers. Hence, the overall network tends
towards a constant zero or constant one.

After coming up with an appropriate set of connections,
we create the whole network. Once we create the network,
we convert the network into an SOP form using sympy
package in python. This is done from reverse topological
order starting from the outputs back to the inputs. We
then pass the SOP form of the final output and create a
verilog file out of that. Using the verilog file, we convert
it into AIG format and then use the ABC command to list
out the output of the &mltest. We also report accuracy
of our network using sklearn.

We have also incorporated use of data from validation
testcase. For our training model, we have used ‘0.4’ part
of the minterms in our training.

VII. TEAM7: LEARNING WITH TREE-BASED
MODELS AND EXPLANATORY ANALYSIS
Authors: Wei Zeng, Azadeh Davoodi, and Rasit Onur

Topaloglu, University of Wisconsin–Madison, IBM, USA

Team 7’s solution is a mix of conventional machine
learning (ML) and pre-defined standard function match-
ing. If the training set matches a pre-defined standard
function, a custom AIG of the identified function is
written out. Otherwise, an ML model is trained and
translated to an AIG.

Team 7 adopts tree-based ML models, considering the
straightforward correspondence between tree nodes and
SOP terms. The model is either a single decision tree
with unlimited depth, or an extreme gradient boosting
(XGBoost) [21] of 125 trees with a maximum depth of
5, depending on the results of a 10-fold cross validation
on training data.

It is straightforward to convert a decision tree to SOP
terms used in PLA. Fig. 23 shows a simple example of
decision tree and its corresponding SOP terms. Numbers
in leaves (rectangular boxes) indicate the predicted output
values. XGBoost is a more complex model in two aspects.
First, it is a boosting ensemble of many shallow decision
trees, where the final output is the sum of all leaf values
that a testing data point falls into, expressed in log odds
log[P (y = 1)/P (y = 0)]. Second, since the output is
a real number instead of a binary result, a threshold of
classification is needed to get the binary prediction (the
default value is 0). Fig. 24(a) shows a simple example
of a trained XGBoost of trees.

With the trained model, each underlying tree is
converted to a PLA, where each leaf node in the tree
corresponds to a SOP term in the PLA. Each PLA are
minimized and compiled to an AIG with the integrated
espresso and ABC, respectively. If the function is
learned by a single decision tree, the converted AIG is
final. If the function is learned by XGBoost of trees, the
exact final output of a prediction would be the sum of the
125 leaves (one for each underlying tree) where the testing
data point falls into. In order to implement the AIGs
efficiently, the model is approximated in the following
two steps. First, the value of each underlying tree leaf
is quantized to one bit, as shown in Fig. 24(b). Each
test data point will fall into 125 specific leaves, yielding
125 output bits. To mimic the summation of leaf values
and the default threshold of 0 for classification, a 125-
input majority gate could be used to get the final output.
However, again for efficient implementation, the 125-
input majority gate is further approximated by a 3-layer
network of 5-input majority gates as shown in Fig. 25.

In the above discussion, it is assumed that the gate
count does not exceed the limit of 5000. If it is not the
case, the maximum depth of the decision tree and the
trees in XGBoost, and/or the number of trees in XGBoost,
can be reduced at the cost of potential loss of accuracy.

Tree-based models may not perform well in some
pre-defined standard functions, especially symmetric
functions and complex arithmetic functions. However,
symmetric functions are easy to be identified by com-
paring the number of ones and the output bit. And it
can be implemented by adding a side circuit that counts
N1, i.e., the number of ones in the input bits, and a
decision tree that learns the relationship between N1 and
the original output. For arithmetic functions, patterns in

0 20 40 60 80 100 120
Input bit

−4

−2

0

2

4
M
ea

n
SH

AP

Fig. 27: Mean SHAP values of input bits in ex35, comparator
of two 60-bit signed integers, showing a pattern of “weights”
that correspond to two signed integers with opposite polarities.

MAJ5MAJ5 …

MAJ5 …
MAJ5

…

(125 outputs from underlying trees)

(Final prediction)

Fig. 25: Network of 5-input majority gates as an approximation
of a 125-input majority gate.

0 10 20 30 40 50 60
Input bit

−0.02

−0.01

0.00

0.01

0.02

0.03

Co
rr.
 c
oe

f.

(a)

0 10 20 30 40 50 60
Input bit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ea

n
|S
HA

P|

Fig. 26: Comparison of two importance metrics: (a) correlation
coefficient and (b) mean absolute SHAP value in ex25, the
MSB of a 32x32 multiplier.

the importance of input bits can be observed in some pre-
defined standard functions, such as adders, comparators,
outputs of XOR or MUX. This is done by training an
initial XGBoost of trees and use SHAP tree explainer
[1] to evaluate the importance of each input bit. Fig. 26
shows that SHAP importance shows a pattern in training
sets that suggests important input bits, while correlation
coefficient fails to show a meaningful pattern. Fig. 27
shows an pattern of mean SHAP values of input bits,
which suggests the possible existence of two signed binary
coded integers with opposite polarities in the function.
Based on these observations, Team 7 checks before ML
if the training data come from a symmetric function, and
compares training data with each identified pre-defined
standard function. In case of a match, an AIG of the
standard function is constructed directly without ML.
With function matching, all six symmetric functions and
25 out of 40 arithmetic functions can be identified with
close to 100% accuracy.

VIII. TEAM 8: LEARNING BOOLEAN
CIRCUITS WITH ML MODEL ENSEMBLE
Authors: Yuan Zhou, Jordan Dotzel, Yichi Zhang,

Hanyu Wang, Zhiru Zhang, School of Electrical and
Computer Engineering, Cornell University, Ithaca, NY,
USA

A. Machine Learning Model Ensemble
Model ensemble is a common technique in the machine

learning community to improve the performance on a
classification or regression task. For this contest, we use
a specific type of ensemble called “bucket of models”,
where we train multiple machine learning models for each
benchmark, generate the AIGs, and select the model that
achieves the best accuracy on the validation set from
all models whose AIGs are within the area constraint
of 5k AND gates. The models we have explored in
this contest include decision trees, random forests, and
multi-layer perceptrons. The decision tree and multi-layer
perceptron models are modified to provide better results
on the benchmarks, and our enhancements to these models
are introduced in Section VIII-B and Section VIII-D,
respectively. We perform a grid search to find the best
combination of hyper-parameters for each benchmark.

B. Decision Tree for Logic Learning
Using decision trees to learn Boolean functions can be

dated back to the 1990s [22]. As a type of light-weight
machine learning models, decision trees are very effective
when the task’s solution space has a “nearest-neighbor”
property and can be divided into regions with similar
labels by cuts that are parallel to the feature axes. Many
Boolean functions have these two properties, making them
ideal targets for decision trees. In the rest of this section
we introduce our binary decision tree implementation, and
provide some insights on the connection between decision
tree and Espresso [23], a successful logic minimization
algorithm.

ABC f
000 0

001 0

010 1

011 1

100 1

101 1

110 0

111 0

𝑓 = 𝐴 𝑥𝑜𝑟 𝐵 A=1

Entries
0,1,2,3

Entries
4,5,6,7

No Yes

C=1

Entries
0,2,4,6

Entries
1,3,5,7

No Yes

Mutual information = 0

Mutual information = 0

Fig. 28: Example of learning a two-input XOR with an
irrelevant input. The whole truth table is provided for illustration
purposes. The impurity function based on mutual information
cannot distinguish the useful inputs (A and B) from the
irrelevant input C. This is because mutual information only
considers the probability distributions at the current node (root)
and its children.

1) Binary Decision Tree: We use our own implemen-
tation of the C4.5 decision tree [24] for the IWLS’20
programming contest. The decision trees directly take the
Boolean variables as inputs. We use mutual information
as the impurity function: when evaluating the splitting
criterion at each non-leaf node, the feature split that
provides the maximum mutual information is selected.
During training, our decision tree continues splitting at
each node unless one of the following three conditions
is satisfied:

1) All samples at a node have the same label.
2) All samples at a node have exactly the same features.
3) The number of samples at a node is smaller than a

hyper-parameter N set by the user.
The hyper-parameter N helps avoid overfitting by allow-
ing the decision tree to tolerate errors in the training
set. With larger N , the decision tree learns a simpler
classification function, which may not achieve the best
accuracy on the training set but generalizes better to
unseen data.

2) Functional Decomposition for Split Criterion Selec-
tion: The splitting criterion selection method described
in Section VIII-B1 is completely based on the probability
distribution of data samples. One drawback of such
probability-based metrics in logic learning is that they are
very sensitive to the sampling noise, especially when the
sampled data is only a very small portion of the complete
truth table. Fig. 28 shows an example where we try to
learn a three-input function whose output is the XOR of
two inputs A and B. An optimal decision tree for learning
this function should split by either variable A or B at
the root node. However, splitting by the correct variable
A or B does not provide higher gain than splitting by
the irrelevant variable C. Depending on the tie-breaking
mechanism, the decision tree might choose to split by
either of the three variables at the root node. For the
contest benchmarks, only a small portion of the truth
table is available. As a result, it is possible that the
sampling noise will cause a slight imbalance between

the samples with zero and one labels. In such cases, it is
likely that the decision tree will pick an irrelevant feature
at the root node.

If the decision tree selects an irrelevant or incorrect
feature at the beginning, it is very difficult for it to
”recover” during the rest of the training process due to
the lack of a backtracking procedure. Finding the best
decision tree for any arbitrary dataset requires exponential
time. While recent works [25] propose to use smart
branch-and-bound methods to find optimal sparse decision
trees, it is still impractical to use such approaches for
logic learning when the number of inputs is large. As
a result, we propose to apply single-variable functional
decomposition when the maximum mutual information is
lower than a set threshold τ during splitting. The value
of τ is a hyper-parameter and is included in the grid
search for tuning. At each none-leaf node, we test all
non-used features to find a feature that satisfies either of
the following two requirements:

1) At least one branch is constant after splitting by this
feature.

2) One branch is the complement of the other after
splitting by this feature.

In many cases we don’t have enough data samples to
fully test the second requirement. As a result, we take
an aggressive approach where we consider the second
requirement as being satisfied unless we find a counter
example. While such an aggressive approach may not
find the best feature to split, it provides an opportunity to
avoid the effect of sampling noise. In our implementation,
functional decomposition is triggered more often at the
beginning of the training and less often when close to
the leaf nodes. This is because the number of samples at
each non-leaf node decreases exponentially with respect
to the depth of the node, and the sampling noise becomes
more salient with few data samples. When the number
of samples is small enough, the mutual information is
unlikely to fall below τ , so functional decomposition will
no longer be triggered.

We observed significant accuracy improvement after
incorporating functional decomposition into the training
process. However, we also realized that the improve-
ment in some benchmarks might be because of an
implementation detail: if multiple features satisfy the
two requirements listed above, we select the last one.
This implementation decision happens to help for some
benchmarks, mostly because our check for the second
requirement is too aggressive. This finding was also
confirmed by team 1 after our discussion with them.

3) Connection with Espresso: We found an interesting
connection between decision tree and the Espresso logic
optimization method. For the contest benchmarks, only
6.4k entries of the truth table are given and all other
entries are don’t cares. Espresso exploits don’t cares by
expanding the min-terms in the SOP, which also leverages
the “nearest neighbor” property in the Boolean input
space. Decision trees also leverage this property, but
they exploit don’t cares by making cuts in the input
space. As a result, neither Espresso nor decision tree is
able to learn a logic function from an incomplete truth
table if the nearest neighbor property does not hold. For
example, according to our experiments, neither technique
can correctly learn a parity function even if 90% of the
truth table has been given.

4) Converting into AIG: One advantage of using
decision trees for logic learning is that converting a
decision tree into a logic circuit is trivial. Each non-
leaf node in the tree can be implemented as a two-input
multiplexer, and the multiplexers can be easily connected
by following the structure of the tree. The values at the
leaf nodes are simply implemented as constant inputs to
the multiplexers. We follow this procedure to convert each
decision tree into an AIG, and use ABC [14] to further
optimize the AIG to reduce area. After optimization, none
of the AIGs generated from decision trees exceeds the
area budget of 5k AND gates.

C. Random Forest
Random forest can be considered as an ensemble of

bagged decision trees. Each random forest model contains
multiple decision trees, where each tree is trained with a
different subset of data samples or features so that the
trees won’t be very similar to each other. The final output
of the model is the majority of all the decision trees’
predictions.

We used the random forest implementation from sci-
kit learn [12] and performed grid search to find the best
combination of hyper-parameters. For all benchmarks
we use a collection of seventeen trees with a maximum
depth of eight. To generate the AIG, we first convert
each tree into a separate AIG, and then connect all
the AIGs together with a seventeen-input majority gate.
The generated AIG is further optimized using ABC.
None of the AIGs exceeds the 5K gate constraint after
optimization.

D. Multi-Layer Perceptron
Our experiments find that multi-layer perceptrons

(MLP) with a variety of activation functions perform
well on certain benchmark classes. These models come
with a few core challenges. First, it is difficult to
translate a trained floating-point model to an AIG without
significantly decreasing the accuracy. Thus, we limit
the size of the MLP, synthesize it precisely through
enumeration of all input-output pairs, and carefully reduce
resultant truth table. Second, MLP architectures have
difficulties with latent periodic features. To address this,
we utilize the sine activation function which can select
for periodic features in the input, validating previous
work in its limited applicability to learning some classes
of functions.

E. Sine Activation
We constructed a sine-based MLP that performed as

well or better than the equivalent ReLU-based MLP
on certain benchmark classes. This work is concurrent
with a recent work that applies periodic activations
to implicit neural representation [26], and draws from
intermittent work over the last few decades on periodic
activation functions [27][28]. In our case, we find the sine
activation function performs well in certain problems that
have significant latent frequency components, e.g. parity
circuit. It also performs well in other cases since for
sufficiently small activations sine is monotonic, which
passes gradients in a similar manner to the standard
activation functions, e.g ReLU. We learn the period of
the activation function implicitly through the weights
inputted into the neuron. However, we find that one

disadvantage is the exponential increase in local minima
[29], which makes training more unstable.

F. Logic Synthesis
After training the (sine-based) MLP models, we convert

them into AIGs. Some common methods for this conver-
sion are binary neural networks [30], quantized neural
networks [31], or directly learned logic [32]. Instead, we
took advantage of the small input size and generated the
full truth tables of the neural network by enumerating
all inputs and recording their outputs. Then, we passed
this truth table to ABC for minimization. This method
is a simpler variant to one described in LogicNets [33].
It easily produces models within the 5k gate limit for
smaller models, which with our constraints corresponds
to benchmarks with fewer than 20 inputs.

G. Summary and Future Work
We have described the ML models we used for

the IWLS’20 contest. Based on our evaluation on the
validation set, different models achieve strong results
on different benchmarks. Decision trees achieve the
best accuracy for simple arithmetic benchmarks (0-39),
random forest gives better performance on the binary
classification problems (80-99), while our special MLP
dominates on the symmetric functions (70-79). It remains
a challenge to learn complex arithmetic functions (40-49)
from a small amount of data. Another direction for future
work is to convert MLP with a large number of inputs
into logic.

IX. TEAM 9:BOOTSTRAPPED CGP LEARNING
FLOW

Authors: Augusto Berndt, Brunno Alves de Abreu,
Isac de Souza Campos, Cristina Meinhardt, Mateus
Grellert, Jonata Tyska Carvalho, Universidade Federal
de Santa Catarina, Universidade Federal do Rio Grande
do Sul, Brazil

A. Introduction
Team 9 uses a population-based optimization method

called Cartesian Genetic Programming (CGP) for synthe-
sizing circuits for solving the IWLS’20 contest problems.
The flow used includes bootstrapping the initial pop-
ulation with solutions found by other well-performing
methods as decision trees and espresso technique, and
further improving them. The results of this flow are
two-fold: (i) it allows to improve further the solutions
found by the other techniques used for bootstrapping
the evolutionary process, and (ii) alternatively, when
no good solutions are provided by the bootstrapping
methods, CGP starts the search from random (unbiased)
individuals seeking optimal circuits. This text starts with
a brief introduction to the CGP technique, followed by
presenting the proposed flow in detail.

CGP is a stochastic search algorithm that uses an
evolutionary approach for exploring the solution’s param-
eter space, usually starting from a random population of
candidate solutions. Through simple genetic operators
such as selection, mutation and recombination, the search
process often leads to incrementally improved solutions,
despite there is no guarantee of optimality.

The evolutionary methods seek to maximize a fitness
function, which usually is user-defined and problem-
related, that measures each candidate solution’s per-
formance, also called individual. The parameter space
search is conducted by adding variation to the individuals
by mutation or recombination and retaining the best
performing individuals through the selection operator
after evaluation. Mutation means that specific individ-
ual’s parameters are randomly modified with a certain
probability. Recombination means that individuals can
be combined to generate new individuals, also with
a given probability. This latter process is referred to
as crossover. However, the CGP variation does not
employ the crossover process since it does not improve
CGP efficiency [34]. The genetic operators are applied
iteratively, and each iteration is usually called generation.

Fig. 29 presents an example of a CGP implementation
with one individual, its set of primitive logic functions,
and the individual’s genetic code. The CGP structure is
represented as a logic circuit, and the CGP Cartesian
values are also shown. Notice that there is only one
line present in the two-dimensional graph, in reference
[35] it is shown that such configuration provides faster
convergence when executing the CGP search. Recent
works also commonly make use of such configuration
[36]. The CGP implemented in work presented herein
used such configuration of only one line and multiple
columns. Please note that one may represent any logic
circuit in a single line as one would in a complete two-
dimensional graph.

Fig. 29 also presents the individuals’ representation,
sometimes called genotype or genetic coding. This code
is given by a vector of integers, where a 3-tuple describes
each node, the first integer corresponds to the node’s logic
function, and the other two integers correspond to the
fan-ins’ Cartesian values. The number of primary inputs,
primary outputs, and internal CGP nodes is fixed, i.e.,
are not under optimization. For the contest specifically,
the PIs and POs sizes will always correspond to the
input PLA file’s values. At the same time, the number
of internal CGP nodes are parametrized and set as one
of the program’s input information.

Notice that the circuit presented in Fig. 29 is composed
of a functional and a non-functional portion, meaning
that a specific section of the circuit does not influence its
primary output. The non-functional portion of the circuit
is drawn in gray, while the functional portion is black.
The functional portion of a CGP individual is said to
be its Phenotype, in other words, the observable portion
with relation to the circuit’s primary outputs. At the same

Fig. 29: Single Line CGP Example.

time, its complete genetic code representation is known
as its Genotype.

As demonstrated by [35], the CGP search has a
better convergence if phenotypically larger solutions
are considered preferred candidates when analyzing the
individual’s fitness scores. In other words, if, during the
evolution, there are two individuals with equal accuracy
but different functional sizes, the larger one will be
preferred. The proposed flow makes use of such a
technique by always choosing AIGs with larger available
sizes as fathers when a tie in fitness values happens.

The proposed CGP flow is presented in Fig. 30. It
first tries to start from a well-performing AIG previously
found using some other method as, for instance, Decision
Trees(DT) or SOP via the Espresso technique. We call this
initialization process bootstrap. It is noteworthy that the
proposed flow can use any AIG as initialization, making
it possible to explore previous AIGs from different
syntheses and apply the flow as a fine-tuning process.

If the bootstrapped AIG has an accuracy inferior to
55%, the CGP starts the search from a random (unbiased)
population seeking optimal circuits; otherwise, it runs a
bootstrapped initialization with the individual generated
by previously optimized Sum of Products created by
Decision Trees or Espresso. Summarizing, the flow’s first
step is to evaluate the input AIG provided by another
method and check whether it will be used to run the
CGP search, or the search will be conducted using a new
random AIG.

Fig. 30: Proposed CGP Flow.

Due to the CGP training approach, the learning set
must be split among the CGP and the other method for
using the Bootstrap option. When this is the case, the
training set is split in a 40%-40%/20% format, meaning
half the training set is used by the initialization method
and the other half by the CGP, while leaving 20% of
the dataset for testing with both methods involved in the
AIG learning.

An empiric exploration of input hyper-parameters con-
figurations was realized, attempting to look for superior
solutions. The evolutionary approach used is the (1+4)-
ES rule. In this approach, one individual generates four
new mutated copies of itself, and the one with the
best performance is selected for generating the mutated

Initialization
Type

AIG
Size

Train/Test
Format

(%)

Batch
Size

Change
Each

Bootstrap Twice the
Original AIG 40-40/20 Half

Train Set
Not

Applicable

Random 500,
5000 80/20

1024,
Complete
Train Set

1000,
2000

Table VII: Hyper-Parameters Dependent on Initialization

copies of the next generation. Variation is added to the
individuals through mutations. The mutation rate is under
optimization according to the 1/5th rule [37], in which
mutation rate value varies jointly with the proportion of
individuals being better or worst than their ancestor.

The CGP was run with three main hyper-parameter:
(1) the number of generations with values of 10, 20, 25,
50 and 100 thousand; (2) two logic structures available:
AIG and XAIG; and (3) the program had the option to
check for all nodes as being a PO during every training
generation. The latter is a computationally intensive
strategy, but some exemplars demonstrated good results
with it. The CGP flow runs exhaustively, combining these
three main hyper-parameter options.

Together with the previously mentioned hyper-
parameters, there is a set of four other hyper-parameters
dependent on the initialization option, presented in Ta-
ble VII. For a bootstrap option of a previous AIG, there
is a single configuration where the CGP size is twice
the Original AIG, meaning that for each node in the
Original AIG, a non-functional node is incremented to the
learning model, increasing the search space. The training
configuration takes half the training set since the other
half was already used by the initialization method. This
bootstrap option does not execute with mini-batches since
they add stochasticity for the search and the intention is
to fine-tune the AIG solution.

For a random initialization, multiple hyper-parameters
alternatives are explored in parallel. The AIG size is
configured to 500 and 5000 nodes. The training set does
not have to be shared, meaning that the whole training set
is employed for the search. Training mini-batches of size
1024 are used, meaning that the individuals are evaluated
using the same examples during a certain number of
consecutive generations. The number of generations a
mini-batch is kept is determined by the change each
hyper-parameter, meaning that the examples used for
evaluating individuals change each time that number of
generations is reached. A previous study showed that
this technique could lead to the synthesis of more robust
solutions, i. e., solutions that generalize well to unseen
instances [38]. The random initialization could also use
the complete train set as if the batch size was the same
as the training set available.

Finally, the last step evaluates the AIGs generated,
collecting results of accuracy, number of nodes, and logic
levels for the validation sets. All the AIGs generated by
the CGP respect the size limit of 5000 AND nodes.
The AIG with the highest accuracy is chosen as the
final solution for the benchmark. The CGP flow shows
the potential to optimize previous solutions, where the
optimization metric is easily configurable.

Experiments were executed on the Emulab Utah [39]
research cluster, the computers available operate under a

Ubuntu 18.04LTS image. The CGP was implemented in
C++ with object-oriented paradigm, codes were compiled
on GCC 7.5.

X. TEAM 10
Authors: Valerio Tenace, Walter Lau Neto, and

Pierre-Emmanuel Gaillardon, University of Utah, USA

In order to learn incompletely specified Boolean
functions for the contest, we decided to resort to decision
trees (DTs). Fig. 31 presents an overview of the adopted
design flow.

Training
PLA

Validation
PLA

DT Training

Accuracy
Check

Verilog
Generation

Training
Augmentation

Synthesis and
Optimization

Validation <= 70%
Validation > 70%

Custom Python

ABC

Fig. 31: Overview of adopted flow.

We developed a Python program using the Scikit-learn
library where the parameter max depth serves as an upper-
bound to the growth of the trees. Through many rounds of
evaluation, we opted to set the max depth to 8, as it gives
small AIG networks without sacrificing the accuracy too
much. The training set PLAs, provided by the contest, are
read into a numpy matrix, which is used to train the DT.
On the other hand, the validation set PLA is used to test
whether the obtained DT meets the minimum validation
accuracy, which is empirically set to be 70%. If such a
condition is not met, the training set is augmented by
merging it with the validation set. According to empirical
evaluations, most of these benchmarks with performance
< 70% showed a validation accuracy fluctuating around
50%, regardless of the size and shapes of the DTs. This
suggests that the training sets were not able to provide
enough representative cases to effectively exploit the
adopted technique, thus leading to DTs with very high
training accuracy, but completely negligible performances.
For DTs having a validation accuracy ≥ 70%, the tree
structure is annotated as a Verilog netlist, where each DT
node is replaced with a multiplexer. In cases where the
accuracy does not achieve the lower bound of 70%, we re-
train the DT with the augmented set, and then annotate it
in Verilog. The obtained netlist is then processed with the
ABC Synthesis Tool in order to generate a compact and
optimized AIG structure. More detailed information about
the adopted technique can be found in [40]. Overall, our
approach was capable of achieving very good accuracy
for most of the cases, without exceeding 300 AIG nodes
in any benchmark, thus yielding the smallest average
network sizes among all the participants. In many cases,
we achieved an accuracy greater than 90% with less
than 50 nodes, and a mean accuracy of 84% with only

140 AND gates on average. Fig. 32 presents the accuracy
achieved for all the adopted benchmarks, whereas Fig. 33
shows the AIG size for the same set of circuits. These
results clearly show that DTs are a viable technique to
learn Boolean functions efficiently.

Benchmarks

A
cc

ur
ac

y
(%

)

0
25
50
75

100

ex00
ex07

ex14
ex21

ex28
ex35

ex42
ex49

ex56
ex63

ex70
ex77

ex84
ex91

ex98

Fig. 32: Accuracy for different benchmarks.

Benchmarks

A
N

D
 G

at
es

0

100

200

300

ex00
ex07

ex14
ex21

ex28
ex35

ex42
ex49

ex56
ex63

ex70
ex77

ex84
ex91

ex98

Fig. 33: Number of AIG nodes for different benchmarks.

REFERENCES

[1] Scott M. Lundberg et al. “From local explanations to global
understanding with explainable AI for trees”. In: Nature
Machine Intelligence 2.1 (2020), pp. 56–67.

[2] Pei-wei Chen et al. “Circuit Learning for Logic Regression on
High Dimensional Boolean Space”. In: Proceedings of Design
Automation Conference (DAC). 2020.

[3] Thomas R. Shiple et al. “Heuristic minimization of BDDs using
don’t cares”. In: Proceedings of Design Automation Conference
(DAC). New York, New York, USA: ACM Press, 1994, pp. 225–
231.

[4] J. Ross Quinlan. C4.5: Programs for Machine Learning. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[5] Eibe Frank and Ian H. Witten. “Generating Accurate Rule Sets
Without Global Optimization”. In: Proceedings of the Fifteenth
International Conference on Machine Learning. ICML ’98. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998,
pp. 144–151.

[6] Mark Hall et al. “The WEKA Data Mining Software: An
Update”. In: SIGKDD Explor. Newsl. (2009).

[7] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER
1.9 And Beyond. Tech. rep. Institute for Formal Models and
Verification, Johannes Kepler University, 2011.

[8] Giulia Pagallo and David Haussler. “Boolean Feature Discovery
in Empirical Learning”. In: Machine Learning (1990).

[9] Arlindo L. Oliveira and Alberto Sangiovanni-Vincentelli.
“Learning Complex Boolean Functions: Algorithms and Appli-
cations”. In: NeurIPS. 1993.

[10] Song Han et al. “Learning Both Weights and Connections for
Efficient Neural Networks”. In: NeurIPS. 2015.

[11] S. Chatterjee. “Learning and memorization”. In: ICML. 2018.
[12] Fabian Pedregosa et al. “Scikit-learn: Machine learning in

Python”. In: JMLR (2011).
[13] Adam Paszke et al. “PyTorch: An Imperative Style, High-

Performance Deep Learning Library”. In: Advances in Neural
Information Processing Systems (NeurIPS) 32. Ed. by H.
Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035.

[14] Robert Brayton and Alan Mishchenko. “ABC: An Academic
Industrial-Strength Verification Tool”. In: Proc. CAV. 2010,
pp. 24–40.

[15] K. Hornik, M. Stinchcombe, and H. White. “Multilayer Feed-
forward Networks Are Universal Approximators”. In: Neural
Netw. 2.5 (1989), pp. 359–366.

[16] Yoav Freund and Robert E. Schapire. “A Decision-Theoretic
Generalization of On-Line Learning and an Application to
Boosting”. In: JCSS (1997).

[17] Leo Breiman. “Random Forests”. In: Machine Learning (2001),
pp. 5–32.

[18] Weiyu Cheng, Yanyan Shen, and Linpeng Huang. “Adaptive
Factorization Network: Learning Adaptive-Order Feature Inter-
actions”. In: Proc. AAAI. 2020.

[19] Robert Brayton and Alan Mishchenko. “ABC: An Academic
Industrial-Strength Verification Tool”. In: Proc. CAV. 2010,
pp. 24–40.

[20] Dan Steinberg and Phillip Colla. “CART: classification and
regression trees”. In: The top ten algorithms in data mining 9
(2009), p. 179.

[21] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree
Boosting System”. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining. San Francisco, California, USA: ACM, 2016, pp. 785–
794.

[22] Arlindo L Oliveira and Alberto Sangiovanni-Vincentelli. “Learn-
ing complex boolean functions: Algorithms and applications”.
In: Advances in Neural Information Processing Systems. 1994,
pp. 911–918.

[23] R. L. Rudell and A. Sangiovanni-Vincentelli. “Multiple-Valued
Minimization for PLA Optimization”. In: IEEE TCAD (1987).

[24] John Quinlan. C4. 5: programs for machine learning. Elsevier,
2014.

[25] Xiyang Hu, Cynthia Rudin, and Margo Seltzer. “Optimal sparse
decision trees”. In: Advances in Neural Information Processing
Systems. 2019, pp. 7267–7275.

[26] Vincent Sitzmann et al. “Implicit Neural Representations with
Periodic Activation Functions”. In: CVPR. 2020.

[27] Alan Lapedes and Robert Farber. “How Neural Nets Work”.
In: Advances in Neural Information Processing Systems. MIT
Press, 1987, pp. 442–456.

[28] J.M. Sopena, Enrique Romero, and Rene Alquezar. “Neural
Networks with Periodic and Monotonic Activation Functions:
A Comparative Study in Classification Problems”. In: Inter-
national Conference on Artificial Neural Networks (ICANN).
1999, 323–328 vol.1.

[29] Giambattista Parascandolo, H. Huttunen, and T. Virtanen.
Taming the waves: sine as activation function in deep neural
networks. 2017.

[30] Zechun Liu et al. ReActNet: Towards Precise Binary Neural
Network with Generalized Activation Functions. 2020.

[31] Ritchie Zhao et al. “Improving Neural Network Quantization
without Retraining using Outlier Channel Splitting”. In: In-
ternational Conference on Machine Learning (ICML) (2019),
pp. 7543–7552.

[32] E Wang et al. “LUTNet: Learning FPGA Configurations
for Highly Efficient Neural Network Inference”. In: IEEE
Transactions on Computers (2020).

[33] Yaman Umuroglu et al. LogicNets: Co-Designed Neural
Networks and Circuits for Extreme-Throughput Applications.
2020.

[34] Julian Francis Miller. “Cartesian genetic programming: its
status and future”. In: Genetic Programming and Evolvable
Machines (2019), pp. 1–40.

[35] Nicola Milano and Stefano Nolfi. “Scaling Up Cartesian
Genetic Programming through Preferential Selection of Larger
Solutions”. In: arXiv preprint arXiv:1810.09485 (2018).

[36] Abdul Manazir and Khalid Raza. “Recent developments in
Cartesian genetic programming and its variants”. In: ACM
Computing Surveys (CSUR) 51.6 (2019), pp. 1–29.

[37] Benjamin Doerr and Carola Doerr. “Optimal parameter choices
through self-adjustment: Applying the 1/5-th rule in discrete
settings”. In: ACGEC. 2015.

[38] Jônata Tyska Carvalho, Nicola Milano, and Stefano Nolfi.
“Evolving Robust Solutions for Stochastically Varying Prob-
lems”. In: 2018 IEEE Congress on Evolutionary Computation
(CEC). IEEE. 2018, pp. 1–8.

[39] Brian White et al. “An Integrated Experimental Environment
for Distributed Systems and Networks”. In: OSDI02. USENIX-
ASSOC. Boston, MA, Dec. 2002, pp. 255–270.

[40] R. G. Rizzo, V. Tenace, and A. Calimera. “Multiplication by
Inference using Classification Trees: A Case-Study Analysis”.
In: ISCAS. 2018.

	I Introduction
	II Background and Preliminaries
	III Benchmarks
	IV Overview of the Various Approaches
	V Results
	V-A Accuracy
	V-B Generalization gap
	V-C Win-rate for different teams

	VI Conclusion
	I team 1
	I-A Learning Methods
	I-B Preliminary Experiment
	I-C Pre-defined standard function matching
	I-D Exploration After The Contest
	I-D1 Binary Decision Tree
	I-D2 Binary Decision Diagram

	II team 2
	II-A Proposed solution
	II-A1 J48
	II-A2 PART

	II-B Results

	III team 3
	III-A DT-based method
	III-B NN-based method
	III-C Model ensemble
	III-D Experimental results
	III-E Take-Away

	IV team4
	IV-A Deep-Learning-Based Boolean Function Approximation
	IV-B Feature Selection with Multi-Level Model Ensemble
	IV-B1 Deep Learning in the Sparse High-Dimensional Boolean Space
	IV-B2 Inference with Sub-Space Expansion
	IV-B3 Accuracy-Node Joint Search with ABC
	IV-B4 Results and Analysis

	IV-C Conclusion and Future Work

	V team 5
	VI team 6
	VII team7: Learning with Tree-Based Models and Explanatory Analysis
	VIII team 8: Learning Boolean Circuits with ML Model Ensemble
	VIII-A Machine Learning Model Ensemble
	VIII-B Decision Tree for Logic Learning
	VIII-B1 Binary Decision Tree
	VIII-B2 Functional Decomposition for Split Criterion Selection
	VIII-B3 Connection with Espresso
	VIII-B4 Converting into AIG

	VIII-C Random Forest
	VIII-D Multi-Layer Perceptron
	VIII-E Sine Activation
	VIII-F Logic Synthesis
	VIII-G Summary and Future Work

	IX team 9:Bootstrapped CGP Learning Flow
	IX-A Introduction

	X team 10

