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Abstract—As deep learning models and datasets rapidly scale
up, model training is extremely time-consuming and resource-
costly. Instead of training on the entire dataset, learning with a
small synthetic dataset becomes an efficient solution. Extensive
research has been explored in the direction of dataset conden-
sation, among which gradient matching achieves state-of-the-art
performance. The gradient matching method directly targets the
training dynamics by matching the gradient when training on the
original and synthetic datasets. However, there are limited deep
investigations into the principle and effectiveness of this method.
In this work, we delve into the gradient matching method from
a comprehensive perspective and answer the critical questions of
what, how, and where to match. We propose to match the multi-
level gradients to involve both intra-class and inter-class gradient
information. We demonstrate that the distance function should
focus on the angle, considering the magnitude simultaneously to
delay the overfitting. An overfitting-aware adaptive learning step
strategy is also proposed to trim unnecessary optimization steps
for algorithmic efficiency improvement. Ablation and comparison
experiments demonstrate that our proposed methodology shows
superior accuracy, efficiency, and generalization compared to
prior work.

I. INTRODUCTION

Large datasets are critical for the success of deep learning

at the cost of computation and memory. The high cost is

unbearable when we train deep learning models with limited

training time or memory budget. For example, quick training

is needed when training is a subtask. When we perform neural

architecture search [8], hyper-parameter optimization [10, 3],

or training algorithm design and validation, we expect to

obtain training performance quickly. Another example is the

training with limited storage space. To overcome catastrophic

forgetting in continual learning, we usually save partial sam-

ples for future training [12]. There is a harsh constraint on

the memory space when training on edge devices [22]. Above

all, it is a critical problem to achieve data efficiency in deep

learning training.

As a traditional method to reduce the size of the training

dataset, coreset construction defines a criterion for represen-

tativeness [9, 16, 5, 1, 17] and then selects samples based on

the criterion. Coreset construction is used in many efficient

and quick training tasks, e.g., accelerating hyperparameter

search [18], continual learning [4]. Unlike the coreset con-

struction method, dataset synthesis generates a small dataset,

which is directly optimized for the downstream task. Since it

does not rely on representative samples, the dataset synthesis

outperforms the coreset construction in the corresponding

downstream task.

Wang et al. [21] formulate the network parameters as a

function of the synthetic training set and formulate the dataset

condensation task as a bi-level optimization problem. Specifi-

cally, the ultimate target is to train deep learning models on the

synthetic training set from scratch such that the trained model

can generalize to the original training dataset. The authors

minimize the training loss on the original large training data

by optimizing the synthetic data. Based on the formulation of

the bi-level optimization problem, Sucholutsky and Schonlau

[20] extend the method by distilling both input and their soft

labels. Such et al. [19] propose to learn a generative teaching

network, which generates synthetic data for training student

networks. Nguyen et al. [15] use kernel ridge-regression to

compress training datasets, enhancing the dataset distillation.

Zhao et al. [26] propose to match gradients w.r.t. parameters

when training examples come from synthetic and original

datasets, respectively, to solve the bi-level optimization prob-

lem. This method mimics the first-order loss landscape when

the real training set is used and intuitively maximizes the land-

scape similarity via gradient matching. By directly targeting

the training dynamics, this optimization-aware methodology

achieves the current state-of-the-art performance on dataset

condensation. However, the previous method does not deeply

investigate the working principle in gradient matching, and the

current matching flow has limited effectiveness and learning

efficiency.

In this paper, we analyze the gradient matching method from

a comprehensive perspective, including what, how, and where

to match. We enhance the gradient matching algorithm with

three essential techniques to achieve higher efficiency and bet-

ter task-specific performance. We highlight our contributions

as follows.

• Multi-level matching. We jointly explore intra-class and

inter-class gradient matching to improve performance

without extra gradient computation.

• Overfitting delaying. We propose to adopt a new type

of gradient matching function to mitigate the overfit-

ting issue on the synthetic training set to facilitate the

optimization. We concentrate on the angle between the

gradients, considering the magnitude simultaneously.979-8-3503-4647-3/23/$31.00 ©2023 IEEE
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Update based on

Gradient Distance

Update using

Gradient Descent

Fig. 1. One simplified inner loop iteration of dataset condensation with
gradient matching algorithm. We first update S to minimize the gradient
distance. Then network parameter is updated to imitate the training process.

• Adaptive learning. We update synthetic data against

the parameter where overfitting happens. Thus, we can

achieve the same performance with fewer parameter

updates.

II. BACKGROUND

In this section, we first introduce the background of dataset

condensation. Then we describe the working principle of the

gradient matching method as we will analyze and extend it in

Section III. Similar to the previous work, we take the classi-

fication task with balanced class distribution as an example.

The algorithm can be easily extended to other problems.

Dataset condensation. Dataset condensation is a task to

generate a small synthetic training dataset S to mimic the

model optimization behavior with the original training set

T . Specifically, the network parameter θ is formulated as a

function of the synthetic training set S [21].

θ(S) = argmin
θ

L(S, θ) (1)

L(S, θ) = 1
|S|

∑
(x,y)∈S �(fθ(x), y) is the loss with synthetic

dataset S and model parameter θ. � is the task specific loss

function, such as cross entropy loss in the classification task.

fθ represents a deep learning model with parameter θ. Thus,

the dataset synthesis problem can be written as the following

bi-level optimization problem.

min
S

L
(
T , θ(S)

)
s.t. θ(S) = argmin

θ
L(S, θ) (2)

We train a deep learning model f using the synthetic training

set S from scratch and obtain the optimal parameter θ(S). The

objective is to minimize L
(
T , θ(S)

)
, the loss on the original

large training set T . In other words, the original dataset T is

the test dataset to verify the model fθ(S).

Gradient matching algorithm. Among all prior work on

dataset condensation, the state-of-the-art performance has been

achieved by gradient matching [26], which directly encourages

the training dynamics on the synthetic set to mimic that on the

real training set. The distance between gradients ∇θtL(St, θt)
and ∇θtL(T , θt) is minimized, where t = 0, ..., T is the time

step. If the gradients match, the training trajectories will be

the same using gradient-based optimization methods.

Algorithm 1 shows the original gradient matching method.

For each iteration of the outer loop, the model parameters θ0
are initialized following the distribution of Pθ0 . Lines 5 ∼
13 correspond one inner loop iteration, which is visualized

in Figure 1. The mini-batches are sampled in the same class

when calculating the distance between these two gradients

∇θtL(St, θt) and ∇θtL(T , θt). Afterwards, the distances for

C classes are accumulated to update the synthetic set,

St+1 = St − ηS∇StD
(
∇θtL(St, θt),∇θtL(T , θt)

)
(3)

where D(a, b) is a function to measure the distance between

two tensors, ηS is the learning rate.

In Lines 10 ∼ 13, the parameter θt is updated for ζθ times

to imitate the training process. The gradient ∇θtL(St+1, θt)
instead of ∇θtL(St, θt) or ∇θtL(T , θt) is used to mimic the

real training step to update the synthetic set. The red arrow in

Figure 1 represents a gradient descent step.

The gradient matching method has several extensions. Zhao

and Bilen [25] extend it with differentiable data augmentation.

Wiewel and Yang [23] propose to learn a weighted combi-

nation of shared components to increase memory efficiency.

These extensions are orthogonal to our analysis and enhance-

ments so that our method can be easily integrated into these

extensions.

III. METHOD

In this section, we present our analysis and describe our im-

provement on the original algorithm. We answer the following

questions. What, how, and where do we match in this gradient
matching algorithm?

A. What we match: multi-level gradient matching

The original algorithm matches gradients of the mini-batch

that samples in the same class. Specifically, we sample mini-

batches BS
c ∼ S , BT

c ∼ T in the c-th class and calculate

the gradients gSc = ∇θtL(BS
c , θt), g

T
c = ∇θtL(BT

c , θt),
respectively. We minimize the distance between these intra-

class gradients with accumulation.

lossintra =

C−1∑
c=0

D(gSc , g
T
c ) (4)

Therefore, only the intra-class gradients are matched by using

these intra-class mini-batches, missing the inter-class gradient

information. However, when we use either S or T to train

the model, we usually use mini-batches that sample across

different classes. To mimic the realistic training process, we

also need to match the gradients of these inter-class mini-

batches. We propose to match the gradients of these inter-class

mini-batches in the following efficient way.

Since {gSc }C−1
c=0 has already been computed when calcu-

lating the intra-gradient distance, we can directly use them

to compute the gradients for the mini-batches
⋃C−1

c=0 BS
c as

follows.

gS∪ = ∇θtL(
C−1⋃
c=0

BS
c , θt) =

∑C−1
c=0 |BS

c |gSc∑C−1
c=0 |BS

c |
(5)

If the mini-batch BS
c shares the same size, we can further

simplify Equation (5) and obtain gS∪ = 1
C

∑C−1
c=0 gSc . We can

also assign different weights to different mini-batches BS
c to

mimic the original training set T if the class distribution is not

balanced in T . gT∪ = ∇θtL(
⋃C−1

c=0 BT
c , θt) can be computed
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Algorithm 1: Gradient matching algorithm. Our proposed methods are highlighted with color.

Input : Original training set T
1 Initialize S0 following Gaussian distribution;

2 for k = 0, 1, ...,K − 1 do // outer loop: explore with different initialization
3 Initialize model parameters θ0 ∼ Pθ0 ;

4 for t = 0, 1, ..., T − 1 do // inner loop
5 for c = 0, 1, ..., C − 1 do
6 Sample mini-batches BSt

c ∼ St, B
T
c ∼ T in the c-th class;

7 Compute gradients gSt
c = ∇θtL(BSt

c , θt), g
T
c = ∇θtL(BT

c , θt);

8 loss =
∑C−1

c=0 D(gSt
c , gTc ) + λD

(
1
C

∑C−1
c=0 gSt

c , 1
C

∑C−1
c=0 gTc

)
;

9 St+1 = St − ηS∇St
loss;

10 θ0t = θt;
11 for i = 0, 1, ..., ζθ(t)− 1 do // update θ with adaptive learning steps
12 θi+1

t = θit − ηθ∇θi
t
L(St+1, θ

i
t);

13 θt+1 = θi+1
t ;

Output: Synthetic training set S

in the same way. In this way, we do not perform extra forward

and backward computations to calculate gradients for the inter-

class mini-batches
⋃C−1

c=0 BS
c and

⋃C−1
c=0 BT

c .

With these inter-class gradients, we add a new term in the

gradient matching loss as shown in Equation (6).

C−1∑
c=0

D(gSt
c , gTc )

︸ ︷︷ ︸
lossintra

+λD
( 1
C

C−1∑
c=0

gSt
c ,

1

C

C−1∑
c=0

gTc
)

︸ ︷︷ ︸
lossinter

(6)

The first term is the intra-class gradient matching loss

lossintra, which is used in the original method. We add

a new term of inter-class gradient matching loss, with λ
being the weight to balance these two terms. In this multi-

level gradient matching loss, we consider both the intra-class

and inter-class information. Through experiments, we find that

the multi-level gradient matching has better performance than

either the intra-class or inter-class counterpart. Experimental

results are shown in Section IV-B.

B. How we match: angle and magnitude

In the original gradient matching algorithm [26], the authors

propose to decompose the matching loss layer by layer

D
(
∇θL(S, θ),∇θL(T , θ)

)
=

L∑

l=1

d
(
∇θlL(S, θ),∇θlL(T , θ)

)

(7)

where L is the number of layers. For each layer, negative

cosine similarity is used as the distance between two tensors,

d(A,B) =

out∑
i=1

(
1− Ai ·Bi

‖Ai‖‖Bi‖
)
, (8)

where out is the number of output channels. For example, the

weights and the corresponding gradients of a 2D convolution

layer has the shape of (out, in/groups, h, w) 1. We

1out and in are the number of output channels and input channels.
groups is the number of blocked connections from input channels to output
channels. h and w are kernel height and width, respectively.

Train with

Train with
Obtain a local minimum 

Fig. 2. Optimization trajectories of training from scratch using S and T .

reshape the gradients as (out, in/groups × h × w) and

compute the cosine similarity for each output channels. This

distance function considers the layer-wise structure and output

channels, enabling a single learning rate across all layers. By

maximizing the cosine similarity between gradients, the S is

expected to lead the parameter in a correct direction.

However, in this distance matching loss, only the angle

between gradients is considered, with the magnitude ignored.

This is a critical issue when we train a network f from scratch

for evaluation using the resultant S . Figure 2 visualizes the

training process using S and T respectively. Since |S| is

usually very small, it is a severe challenge that the deep learn-

ing model can easily remember the samples, which induces

overfitting and a bad generalization. The norm of gradient

‖∇θL(S, θ)‖ degrades quickly during the training process.

In few gradient descent steps, we will be stuck in a local

minimum, where ∇θL(S, θ) = 0.

It is meaningless to match the angle when either of the

gradient norm are small. The right direction cannot help us

escape the local minimum. Thus, we have to consider the

magnitude of the gradient vectors in this distance function.

For example, we can consider the Euclidean distance between

two vectors Ai and Bi,

d(A,B) =

out∑
i=1

(
1− Ai ·Bi

‖Ai‖‖Bi‖
+ ‖Ai −Bi‖

)
(9)

We also try other distance functions that consider the magni-

tude and show the results in Section IV-C.
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C. Where we match: adaptive learning steps
In the t-th iteration of the inner loop, θt is used to update

St, and St+1 is used to update θt. Here comes the question in

this sequential update. When we update St, how many gradient

descent steps do we perform such that St+1 is a good training

set for θt? Similarly, how many gradient descent steps do we

conduct when we update θt such that θt+1 is a good point for

St+1?
In the original algorithm, the authors provide their answers

by setting the number of gradient descent steps ζS , ζθ empir-

ically. Namely, we have the following update flows.

St = S0
t → S1

t → S2
t → ... → SζS

t = St+1 (10)

θt = θ0t → θ1t → θ2t → ... → θζθt = θt+1 (11)

We present our understanding of these two hyper-

parameters. A change on S may induce a non-negligible

update in the gradient ∇θL(S, θ), which is large enough for

a update in the parameter. Moreover, S should not be updated

many times at one parameter θ to avoid overfitting. Hence, the

original setting of ζS = 1 is a good choice.
Updating θt is an imitation of the training process. The

synthetic dataset S is the training dataset, while the original

training dataset T serves as the validation dataset. In particular,

after one update from θit to θi+1
t , we usually have a smaller

training loss L(St+1, θ
i
t) > L(St+1, θ

i+1
t ). However, it is

unknown how the validation loss change. The relationship be-

tween L(T , θit) and L(T , θi+1
t ) is uncertain. We can check if

there exists overfitting after updating θt. The naive method of

detecting overfitting is making comparison between L(T , θit)
and L(T , θi+1

t ). We can also check the gap between two

loss terms L(T , θi+1
t ) − L(St+1, θ

i+1
t ) to decide whether if

overfitting happens.
Ideally, we should update network parameters θ until over-

fitting happens. If there is no overfitting, the S leads the

parameter as T does, which means S is a good approximation

of T in the perspective of gradient matching. We do not need

to update S in this case. If overfitting happens, the S needs

to be updated against the current parameter since the S has

divergence from T . Hence, it is better to use dynamic and

adaptive learning steps, which help us locate where we need

to update S and improve the algorithm efficiency.
Nevertheless, there is an overhead to detect the overfitting

in real implementation. For instance, we have to compute the

loss term L(T , θi+1
t ) as the extra computation. Therefore,

we propose to run preliminary experiments and find when

overfitting usually happens. With the preliminary results, we

make a schedule for ζθ. In other words, let ζθ be a function

of the index of the current inner loop t and we define this

function from preliminary results to avoid the extra computa-

tion on overfitting detection. This ζθ(t) could help us locate

where overfitting happens approximately. Figure 3 shows this

improvement.

D. Improved gradient matching flow
Algorithm 1 shows our improvement on the gradient match-

ing algorithm, with changes highlighted. We match the multi-

time step

loss

ζθ 2ζθ 3ζθ 4ζθ time step

loss

Update only 
when model 
overfits

time step

loss

t1 t2 t3 t4

Fixed steps
(Inefficient & Overfitting)

Overfitting detection
(High detection cost)

Proposed adaptive steps
(Efficient & Less overfitting)

Fig. 3. Left. The original method updates S after updating network parameter
θ for a fixed number of steps ζθ [26]. Middle. Ideally, S should be
updated right after the model overfits. Right. To avoid overhead on detecting
overfitting, we propose to use adaptive learning steps ζθ(t).

TABLE I
TEST ACCURACY (%) WITH MATCHING DIFFERENT GRADIENTS. NEW

DISTANCE FUNCTION AND ADAPTIVE LEARNING STEPS ARE DISABLED.

Dataset #Image/Class intra-class inter-class interleaved multi-level

MNIST
1 91.7±0.5 88.8±0.7 91.7±0.4 90.9±0.5

10 97.4±0.2 96.9±0.1 97.1±0.1 97.6±0.1

FashionMNIST
1 70.5±0.6 70.2±0.7 70.6±0.6 70.6±0.7

10 82.3±0.4 82.4±0.3 83.1±0.3 84.4±0.3

SVHN
1 31.2±1.4 29.8±0.7 30.8±1.6 32.9±1.2

10 76.1±0.6 72.7±1.0 75.4±0.7 75.5±0.7

CIFAR-10
1 28.3±0.5 29.7±0.7 28.6±0.7 29.7±0.7

10 44.9±0.5 46.7±0.5 45.9±0.6 48.6±0.5

level gradients to consider both intra-class and inter-class

information without extra gradient computation, as shown in

Line 8. We apply the new distance function, which considers

magnitude, to avoid small gradients, which delays the overfit-

ting. We use a dynamic number of steps in Line 11 to improve

the algorithm efficiency. Ideally, the θ should be updated

until overfitting happens where S diverges from T . We use a

schedule ζθ(t) to help us approximate when overfitting occurs.

IV. EXPERIMENTS

We show an ablation study on our proposed techniques to

validate their superiority to other variants and compare the test

accuracy with prior arts.

A. Settings

We follow the same settings with the original work for

all the experiments. Specifically, we use the same network

architectures, datasets, and hyperparameters. The difference

is the improvement highlighted in Algorithm 1. We use five

image classification datasets, MNIST [7], FashionMNIST [24],

SVHN [14], CIFAR-10 [13] and CIFAR-100. These datasets

have a balanced class distribution. There are 100 classes in

the CIFAR-100 dataset, while other datasets have 10 classes.

We refer to the original work [26] and implementation 2

for more details regarding experimental settings. The results

of the baseline method are from the original paper.

There are two phases in every single experiment. We first

use our algorithm to obtain a small synthetic training set S
with a source model. In the second phase, we train a target
model with S from scratch and test the trained model on the

original testing dataset. For every experiment, we generate 2

sets of synthetic images and train 50 target networks. The

average and standard deviation of the test accuracy over these

100 evaluations are reported.

2Link to the implementation
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TABLE II
TEST ACCURACY (%) WITH DIFFERENT DISTANCE FUNCTIONS.

Distance Function Test Accuracy
d1(a, b) = 1− (a · b)/(‖a‖‖b‖) 32.9±1.2

d2(a, b) = ‖a− b‖ 23.6±2.1

d3(a, b) = ‖a− b‖2 24.3±1.8
100d4(a, b) = 100d3(a, b)/len(a) 23.5±1.4

d1 + d2 34.5±1.9
d1 + d3 34.1±2.0

d1 + 100d4 34.0±1.4

B. Different gradient matching methods

Our first improvement is to match the multi-level gra-

dients, as discussed in Section III-A. To demonstrate the

efficacy of our proposed method, we make comparisons on

four settings: (1) intra-class gradient matching, (2) inter-class

gradient matching, (3) matching these two gradients in an

interleaved way3, and (4) multi-level gradient matching. We

use the same hyperparameters in these experiments, with λ
being the number of classes C, disabling the new distance

function and adaptive learning steps. Table I lists the results

on four datasets. In most cases, the multi-level gradient

matching achieves the best results. Focusing on either intra-

class gradient matching or inter-class gradient matching misses

the other information. Compared with minimizing the two

matching losses in an interleaved way, the multi-level gradient

matching is much more stable.

C. Different distance functions

Our second improvement is to use a new distance function.

We make comparisons on the following distance functions

with multi-level gradients enabled. (1) Negative cosine sim-

ilarity d1(a, b) = 1− (a · b)/(‖a‖‖b‖), (2) Euclidean distance

d2(a, b) = ‖a − b‖, (3) sum of the squared error d3(a, b) =
‖a− b‖2, (4) mean squared error d4(a, b) = d3(a, b)/len(a),
Note that the d1 focuses on the angle only, while the other

functions consider angle and magnitude simultaneously.

We take the SVHN dataset with 1 image per class as an

example. Table II lists the test accuracy when using these

distance functions to generate synthetic sets. We directly

assign the same weight to these distance functions except that

we set the weight of 100 for d4.

We find that when using only one of these distance func-

tions, the test accuracy with d1 is the highest. Our explanation

is that the angle of the gradient is much more important

than the magnitude when (stochastic) gradient descent and

its variants are used. However, when we combine d1 and

other magnitude-related distance functions, we get improve-

ment compared with pure d1. Namely, we concentrate on the

gradient direction while considering the magnitude to avoid

being stuck in traps where the gradient norm is small.

D. Adaptive learning steps

Ideally, we should update S when it is no longer a good

approximation of T in terms of gradient matching. Thus,

3We match intra-class gradients in one iteration, and match inter-class
gradients in the next iteration.

a criterion to detect overfitting is needed. We try the naive

overfitting criterion L(T , θit) < L(T , θi+1
t ). In other words, if

the validation loss increases, we will stop the parameter update

and proceed to update S . With this setting, we have improved

the test accuracy from 44.9% to 45.7% for 10 images per class

of CIFAR-10. However, we notice that this improvement is at

the cost of overfitting detection, which is nontrivial in real

implementation. Therefore, we define a pre-defined schedule

ζθ(t) by observing when overfitting happens in the CIFAR-10

experiment above.

ζθ(t) =

⎧⎪⎨
⎪⎩
50− 10t, t < 4

10, 4 ≤ t < 10

5, t ≥ 10

(12)

The reason ζθ(t) is non-increasing is that we may encounter

overfitting issues more frequently as training proceeds. Hence,

we need to update S at shorter intervals.

With this schedule, we can first proceed to where overfit-

ting happens and then stay in this area. Another advantage

of this schedule is that it reduces the number of model

parameter updates. In the baseline method, the authors set

T = 1, 10, 50, ζθ = 1, 50, 10 for synthesizing 1, 10, 50 images

per class. Taking T = 10 as an example, the original algorithm

updates θ 450 times in one iteration of the outer loop, while

we only update it 190 times.

E. Comparison with prior work

In Table III, we perform an ablation study on our methods

with four settings to demonstrate the effectiveness of our

proposed enhancement. We name the four settings as Ours-
M, Ours-MD, Ours-MDO, and Ours-MDA, where M , D, O, A
stand for multi-level gradient matching, new distance function,

updating θ until overfitting, and adaptive steps, respectively.

We also add two coreset selection methods for comparison.

Random means that samples are randomly selected as the

coreset. Herding [6, 2] selects samples whose center is close

to the distribution center. For a fair comparison, we evaluate

our method on the same ConvNet model [11] as used in the

original work [26]. Both the source network and the target

network are the ConvNet model.

For our method, we use the settings mentioned above. We

match the multi-level gradients as shown in Equation (6)

with λ = C, the number of classes. We use the distance in

Equation (9), the overfitting criterion L(T , θit) < L(T , θi+1
t ),

and the adaptive learning step in Equation (12). 4 We use the

same settings for all the benchmarks without further tuning 5.

It is expected that we can achieve better results with better

hyperparameters tuned for each benchmark. For instance, we

can tune the distance function and the learning steps ζθ(t).
Since the algorithm only runs a single inner loop, i.e.,

T = 1, when the condensed dataset contains one image per

4Equation (12) is from the observation on a CIFAR-10 experiment and we
generalize the setting to other benchmarks.

5An exception is that we use d = d1 + 0.1d2 = 1− (a · b)/(‖a‖‖b‖) +
0.1‖a− b‖ for 50 images per class with CIFAR-10.
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TABLE III
ABLATION STUDY IN TERMS OF THE TEST ACCURACY (%). IPC IS THE NUMBER OF IMAGE PER CLASS IN S . Random MEANS THAT SAMPLES ARE

RANDOMLY SELECTED AS THE CORESET. Herding SELECTS SAMPLES WHOSE CENTER IS CLOSE TO THE DISTRIBUTION CENTER. DC baseline REFERS TO

THE ORIGINAL WORK ON DATASET CONDENSATION. M , D, O, A REPRESENT MULTI-LEVEL GRADIENT MATCHING, NEW DISTANCE FUNCTION,
UPDATING θ UNTIL OVERFITTING, AND ADAPTIVE STEPS, RESPECTIVELY. O AND A ARE NOT APPLICABLE WHEN IPC IS 1.

Dataset IPC Random Herding DC Baseline Ours-M Ours-MD Ours-MDO Ours-MDA Whole Training Set

MNIST
1 64.9±3.5 89.2±1.6 91.7±0.5 90.9±0.5 91.9±0.4 - -

99.6±0.010 95.1±0.9 93.7±0.3 97.4±0.2 97.6±0.1 97.9±0.1 97.9±0.1 97.9±0.2
50 97.9±0.2 94.8±0.2 98.8±0.2 98.0±0.1 98.6±0.1 98.6±0.1 98.5±0.1

FashionMNIST
1 51.4±3.8 67.0±1.9 70.5±0.6 70.6±0.7 71.4±0.6 - -

93.5±0.110 73.8±0.7 71.1±0.7 82.3±0.4 84.4±0.3 85.4±0.3 84.6±0.3 84.2±0.3
50 82.5±0.7 71.9±0.8 83.6±0.4 87.8±0.2 87.4±0.2 87.9±0.2 87.9±0.2

SVHN
1 14.6±1.6 20.9±1.3 31.2±1.4 32.9±1.2 34.5±1.9 - -

95.4±0.110 35.1±4.1 50.5±3.3 76.1±0.6 75.5±0.7 75.9±0.7 76.2±0.7 75.9±0.7
50 70.9±0.9 72.6±0.8 82.3±0.3 82.2±0.2 82.9±0.2 83.8±0.3 83.2±0.3

CIFAR-10
1 14.4±2.0 21.5±1.2 28.3±0.5 29.5±0.7 30.0±0.6 - -

84.8±0.110 26.0±1.2 31.6±0.7 44.9±0.5 48.6±0.5 49.5±0.5 49.9±0.6 50.2±0.6
50 43.4±1.0 40.4±0.6 53.9±0.5 58.5±0.5 58.6±0.4 60.0±0.4 58.3±0.5

CIFAR-100
1 4.2±0.3 8.4±0.3 12.8±0.3 12.4±0.3 12.7±0.4 - -

56.2±0.3
10 14.6±0.5 17.3±0.3 25.2±0.3 30.8±0.3 28.0±0.4 29.5±0.3 31.1±0.3

class, the method of adaptive step has no impact in this setting.

In terms of test accuracy, our proposed multi-level gradient

matching and angle-magnitude distance function outperform

the baseline gradient matching method [26] in most bench-

marks. Our proposed adaptive learning step technique is a

good approximation of overfitting detector since the results of

Ours-MDO and Ours-MDA are similar. With Ours-MDA, we

cut down unnecessary steps in the later optimization stage,

leading to higher learning efficiency while maintaining our

advantages in test accuracy.

The usage of multi-level gradients and new distance func-

tions introduces less than 1% extra computation time. The

adaptive learning step can reduce the computation time by

25% ∼ 30% for the experiments with 10 images per class.

V. CONCLUSION

In this paper, we present our analysis of the gradient

matching method for the dataset condensation problem. Based

on our analysis, we further extend the original algorithm. We

provide our answers to the question of what, how, and where
we match in this gradient matching algorithm. We match the

multi-level gradients to involve both intra-class and inter-class

gradient information. A new distance function is proposed to

mitigate the overfitting issue. We use adaptive learning steps to

improve algorithm efficiency. The effectiveness and efficiency

of our proposed improvements are shown in the experiments.
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