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Optical simulation plays an important role in photonic hardware design flow. The finite-difference time-domain (FDTD)
method is widely adopted to solve time-domain Maxwell equations. However, FDTD is known for its prohibitive
runtime cost as it iteratively solves Maxwell equations and takes minutes to hours to simulate a single device. Recently,
Al has been applied to realize orders-of-magnitude speedup in partial differential equation (PDE) solving. However,
Al-based FDTD solvers for photonic devices have not been clearly formulated. Directly applying off-the-shelf models
to predict the optical field dynamics shows unsatisfying fidelity and efficiency since the model primitives are agnostic
to the unique physical properties of Maxwell equations and lack algorithmic customization.

In this work, we thoroughly investigate the synergy between neural operator designs and the physical property of
Maxwell equations and introduce a physics-inspired Al-based FDTD prediction framework PIC20-Sim. PIC20-Sim
features a causality-aware dynamic convolutional neural operator as its backbone model that honors the space-time
causality constraints via careful receptive field configuration and explicitly captures the permittivity-dependent light
propagation behavior via an efficient dynamic convolution operator. Meanwhile, we explore the trade-offs among
prediction scalability, fidelity, and efficiency via a multi-stage partitioned time-bundling technique in autoregressive
prediction. Multiple key techniques have been introduced to mitigate iterative error accumulation while maintaining
efficiency advantages during autoregressive field prediction. Extensive evaluations on three challenging photonic device
simulation tasks have shown the superiority of our PIC20-Sim method, showing 51.2% lower roll-out prediction error,
23.5 times fewer parameters than state-of-the-art neural operators, providing 133-310x or 31-89x higher simulation

speed than an open-source single-process or 8-process parallel FDTD numerical solver.

I. INTRODUCTION

Photonics has demonstrated significant potential for high-
performance, energy-efficient computing, communication,
and sensing, owing to the fast propagation speed, high band-
width, and high degree of freedom of photons. Finite-
difference time-domain (FDTD) simulation is a widely used
numerical method for simulating the spectral response of
photonic structures. This method solves the time-dependent
Maxwell equations on a discrete mesh to simulate electromag-
netic (EM) wave propagation. However, FDTD simulations
are highly time-consuming because they require iterative up-
dates of the EM field distribution across a fine space-time grid
to ensure convergence. The computational complexity of 2D
FDTD is 0(N°T), where N represents the spatial grid dimen-
sions and T the simulation timesteps. For instance, simulat-
ing a small 2D photonic device measuring 28um x 10.5um
over a 1.3 ps timespan can take around one minute on pow-
erful CPUs, as illustrated in Fig. 1(a). Simulating larger
devices or circuits with intricate structures and resonant re-
sponses requires hours of computation, significantly slowing
down the design process and making iterative simulation-in-
the-loop optimization prohibitively expensive. This highlights
the pressing need for an ultra-fast surrogate simulation model
that can provide rapid feedback during the early stages of de-
sign.

There is a growing trend toward using Al to accelerate PDE

solving for physical simulations. Physics-informed neural
networks (PINNs)® and neural operators (NOs) have demon-
strated the ability to learn nonlinear, high-dimensional map-
pings from PDE observations to solutions, achieving orders-
of-magnitude speed improvements over traditional numeri-
cal solvers. Al-based surrogate models have been success-
fully applied in a variety of scientific domains, including
fluid dynamics and field simulations'**~?, weather forecast-
ing'’, and hardware simulation and inverse design''~">. In
the realm of Al for optics, previous work has introduced
physics-augmented and data-driven neural networks'"»'>!* for
finite-difference frequency-domain (FDFD) optical simula-
tions. Some research has also explored time-domain field
prediction, replacing FDTD solvers with PINNs'®'7 and
physics-driven recurrent neural networks (RNNs)'® that em-
bed iterative FDTD update rules into the model architecture
to directly simulate light propagation.

The potential of Al to solve time-domain Maxwell equa-
tions and directly generate optical field dynamics as a video
remains underexplored. In this work, we address several
key questions related to Al-based optical FDTD tasks: (1)
What neural operator architecture honors the physics
constraints of time-domain Maxwell equations? State-of-
the-art neural operators designed for flow dynamics or EM
wave simulations often use global-view operators, such as
multi-scale convolution'””" and Fourier-domain operators',
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FIG. 1: (a) Our ML-based model shows orders-of-magnitude speedup over FDTD solvers. (b) Global-view FNO' with
truncated modes cannot learn local convolution. (c) (Top) Due to light speed limitation, space causality implies local receptive
fields; (Bottom) Wave propagation depends on local permittivity distributions. (d) Expanding convolutional kernel sizes for
long-term prediction is not scalable in runtime and memory, especially for dynamic convolution PAConv”.

to capture long-range correlations in the solution domain,
as shown in Fig. 1(b). However, this approach can vio-
late the space-time causality constraints of Maxwell’s equa-
tions, where the speed of light limits the maximum dis-
tance over which information can propagate, as illustrated
in Fig. 1(c) (Top). Moreover, Fourier operators, with trun-
cated frequency modes, are not ideal for representing lo-
cal interactions, making convolution with a limited receptive
field a more suitable candidate. (2) How should PDE vari-
ables be effectively represented in the model architecture?
Many existing approaches treat all PDE variables as multi-
channel tensors fed into the neural operator, without consid-
ering their distinct physical properties. However, Maxwell’s
equations imply a permittivity-dependent wave propagation
behavior, as shown in Fig. 1 (c)(Bottom), which cannot be ad-
equately captured by static matrix multiplication or convolu-
tion. (3) What are the trade-offs among scalability, long-
term prediction fidelity, and speedup? Since FDTD re-
quires generating a video of field dynamics, it is essential
to determine how to formulate this video generation task in
a scalable, efficient, and high-fidelity manner. A straightfor-
ward approach is to predict each frame in the next timestep
with high fidelity. However, this sacrifices speed benefits due
to the large number of iterations and leads to error accumula-
tion over time, resulting in significant rollout errors. On the
other hand, predicting the entire video in one shot avoids er-
ror accumulation but greatly increases the learning difficulty
and is not scalable for long simulation timespans, as comput-
ing and memory costs grow quadratically with larger receptive
fields (kernel sizes), as depicted in Fig. 1(d).

Building on the unique characteristics of optical FDTD
simulations, we address the three key unresolved questions
and propose a physics-inspired, data-driven ML-based pho-
tonic FDTD simulation framework, dubbed PIC%20-Sim. In-
spired by the space-time locality and permittivity dependency
of light propagation, we draw an analogy between optical
FDTD simulations and dynamic convolution. The PIC20-Sim
framework employs a dynamic convolutional neural operator
model to predict high-quality light fields in a time-bundled

manner. To generate long timespan light dynamics, we use
an autoregressive, multi-iteration approach to maintain scala-
bility and speed advantages while minimizing the long-term
prediction error.

The main contributions of this work are threefold:

* We thoroughly investigate the unique properties and un-
resolved challenges in Al-based time-domain Maxwell
PDE solving and introduce PIC20-Sim, a physics-inspired,
causality-constrained FDTD simulation framework for pho-
tonic devices that balances scalability, fidelity, and speed.

* We identify the analogy between FDTD and dynamic con-

volutions, designing a convolutional neural operator model
with causality-aware receptive fields and dilated, position-
adaptive dynamic convolutions™'+*” to predict permittivity-
aware light propagation.

* We propose an autoregressive framework for scalable long-
term video generation, mitigating temporal error accumula-
tion through cross-iteration error correction techniques.

» Extensive evaluations demonstrate superior prediction fi-
delity and efficiency across three types of complex photonic
devices, achieving 51.2% lower prediction errors, 23.5x
higher parameter efficiency, and hla speedup of 133~310x
compared to the single-core open-source FDTD solver
Meep and 31~89x compared to 8-core parallel Meep. For
details regarding the speed-up, please refer to Appendix A 3.

Il. BACKGROUND: Al FOR PDE SOLVING

Recently, scientific machine learning algorithms have been
widely explored to accelerate the solution of fundamental
PDE problems, offering orders-of-magnitude speed improve-
ments. PINNs and data-driven neural operators represent two
branches of research where physics is either added as a hard
constraint or ignored to remove domain knowledge require-
ments. In the field of Al for optics, physics-informed models,
e.g., WaveTorch™, directly embed the PDE updating rules in



the recurrent neural network (RNN) cells to leverage the GPU-
accelerated inference engine for faster iteration. With a small
enough spatiotemporal resolution, these methods have a the-
oretical guarantee on the solved fields, while their speedup is
rather limited due to a large number of iterations. Also, over-
simplified equations in the RNN cells make it hard to match
the golden results from commercial tools.

Physics-augmented models, such as MaxwellNet'” and
WaveYNet'!, use a standard U-Net architecture and incorpo-
rate Maxwell residual loss into the training objective to learn
optical fields that respect physical constraints. More recently,
SineNet'” was introduced to mitigate temporal misalignment
caused by skip connections between multi-scale features in
U-Net, using a cascading U-Net structure.

However, the synergy between model architecture and the
underlying physical constraints of Maxwell equations remains
under-explored. SoTA neural operators may not be well-
suited for optical FDTD simulations due to the unique proper-
ties of Maxwell’s equations. Besides, prior work has largely
focused on single-iteration prediction tasks without handling
the error accumulation effects that arise in autoregressive pre-
diction.

I1l. PROPOSED PIC?0-SIM FRAMEWORK

A. Understanding the FDTD Simulation for Light
Propagation in Photonic Devices

First, we formulate the FDTD method for photonic de-
vice simulation. FDTD starts by injecting an eigenmode light
source into the device and simulating the light propagation
via sequential time-stepping. To capture the response across
multiple wavelengths in one shot, The incident source typi-
cally has a Gaussian-shaped envelope centered at frequency
fe with a frequency width of f,,, enabling broadband simula-
tion by covering a wide range of wavelengths. FDTD method
discretizes the time-domain Maxwell equation and iteratively
updates the electric fields. For the details of the electric field
updating rule, please refer to Appendix A |
Considerable computational complexity of FDTD. FDTD
is computationally intensive, as its convergence relies on fine-
grained space-time resolutions (A, A,, Ay) to accurately cap-
ture light-speed signal propagation, e.g., a typical timestep is
A; = 0.167fs, and a space resolution is around 1/15 of the
wavelength, resulting in high computational complexity of

(IAV;CLV:AT; ), where Ny, Ny are the domain dimensions and T
is the simulation timespan. To further improve convergence,
electric and magnetic fields are updated alternately on an in-
terleaved 2D Yee grid, increasing the computational cost by a
factor of four. Consequently, a fast prediction method capable
of bypassing numerous FDTD time-marching steps and di-
rectly reconstructing the spatiotemporal fields would dramat-
ically accelerate time-domain photonic device simulations.

Causality-constrained space-time locality. In near-future
light field prediction tasks, wave propagation is constrained
to a local spatial region due to the finite speed of light, as
illustrated by the light cone in Fig. 2. This means that any
fields outside the light cone are non-causal to the central field,
implying a limited theoretical spatial receptive field (RF) for
any prediction model. A model with an RF that is too small

light
cone
§ — s )
@ maximum light propagation
> ‘distance in a medium
R N -
(m'"" ! theoretical model
- . s receptive field for
& @/ 1.25 fs timestep
’ fieldsiout of light cone are non-causal
: space io ,
® %’ocamy | .»nmmm)' theor?‘ﬂcarl"nzg (;el
! I receptive iie or
§ w : 2.5 fs timestep
M time locality fields'inside light cone are causal

FIG. 2: INlustration of the causality-constrained space-time
locality and the theoretical receptive field.

lacks sufficient information to accurately reconstruct the cen-
tral field. Conversely, a model with overly large RF or global
views extending beyond the light cone risks learning non-
physical mappings by incorporating irrelevant, non-causal in-
formation. Besides spatial locality limited by light speed, the
light field also exhibits temporal locality Based on Maxwell
equations, the field distribution at timestep ¢ solely depends
on the electromagnetic wave in the previous timestep # — 1.
This indicates that capturing a long temporal context, as is of-
ten preferred in other sequence or time-series modeling tasks,
is unnecessary in this case. Therefore, it is crucial to design a
model with a carefully selected space-time receptive field that
respects causality.

Permittivity-dependent light propagation. The causality-
constrained space-time locality suggests that a convolution-
based neural operator with a carefully selected spatial re-
ceptive field is well-suited for propagating light waves from
neighboring causal regions to the central location. However,
static convolution operations may not be sufficient to model
the complex light-matter interaction in the photonic device as
the local wave propagation behavior at coordinate [m,n] is a
function of material permittivity €[m,n] at that specific loca-
tion, as illustrated in Fig. 1(c). Such a property implies that
the convolutional filter, which simulates the wave propagation
mechanism, should dynamically adjust its values based on the
local material permittivity. This insight leads us to propose a
dynamic permittivity encoding in the convolutional filters.

B. Proposed PIC20-Sim Framework

1. Framework Overview

~

Figure 3 illustrates our autoregressive time-bundled
PIC20-Sim framework. To potentially handle prediction over
a long time horizon, PIC20-Sim autoregressively predicts the
future optical field dynamics based on previous fields Ej;, and
corresponding light source J. Time-bundling is employed to
predict multiple timesteps/frames of fields at each iteration.

PIC20-Sim formulates a single-iteration FDTD prediction
task as a functional mapping from given initial condition
o/ € R®*4 _including previous light fields, light source, and
device permittivity distribution, to the electrical field solution
U € R®*4_ For details on why we chose to predict the fields
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representation.

instead of specific quantities, such as the S-parameter at a par-
ticular port, please refer to Appendix A 2. Q is the 2-D field
domain with a size of [Ny, Ny]. PIC?0-Sim takes E;, from pre-
vious Tj, timesteps and Jy.r in the future T timesteps as input
and passes through a convolutional neural operator Wy to pre-
dict the future T-step light fields E.7. The neural operator ¥y
consists of a field encoder, a dynamic convolutional backbone,
and a prediction head. Permittivities/refractive indices of the
device are explicitly encoded by a dedicated device encoder
and fed into all dynamic position-adaptive convolutional lay-
ers in the model backbone, guiding the light propagation pro-
cess.

2. Resolution-Preserved Shift-Invariant Domain
Discretization

To handle varying device sizes, prior work'* employed a
scale-adaptive domain discretization approach that resizes

devices of different physical dimensions to a fixed image
size, as Fourier neural operators require a function mapping
in a fixed domain Q. In contrast, PIC?0-Sim preserves the
spatial resolution (A,,A,) and uses padding, if necessary, to
maintain shift-invariance. This design offers two key advan-
tages: (1) Shift-invariant is more scalable and generaliz-
able than resolution-invariant discretization in our prob-
lem. The prediction model is trained on ground-truth fields
simulated with sufficiently high resolution to ensure FDTD
accuracy, typically where a wavelength contains 15-20 pixels.
Increasing the resolution beyond this point provides no prac-
tical benefit. Moreover, downsizing introduces the challenge
of handling large, unseen devices, where excessive downsam-
pling leads to significant information loss. By leveraging the
shift-invariant property of convolution, our model can predict
light propagation across arbitrarily large domains without the
loss of information caused by downsampling, as long as the
spatial resolution remains consistent. (2) Training efficiency
benefit. To avoid downsampling-induced information loss,
the domain-adaptive method tends to scale all devices to a
large image size, which causes high costs during training and
inference. In contrast, PIC20-Sim scales all devices to the
same pixel resolution, e.g., Ay = A, = 140nm and pads de-
vices to the maximum image size only in this mini-batch for
parallel batched processing as shown in Fig. 4(a). In this way,
we can avoid information loss due to the downsampling of
large devices and improve speeds on small devices.

3. Model Input/Output Definition: Permittivity, Input
Fields, and Sources

At one iteration, the model takes the permittivity €. and
T;,-frame input fields E;, € RTn*#*Whefore the target pre-
diction timestep, and T-frame light sources J;.7 as the PDE
variables. For 2D simulation, the line-shaped Gaussian eigen-
mode source Ji.7 is injected at the port center. The existence
of a source in the system is the fundamental difference and
also the challenging part compared to other source-free PDE
systems. The right-hand side of the Maxwell equation is not
zero but a time-varying function J(¢), such that each frame
of field is potentially impacted by all previous injected light
sources. We formulate the variable light source within the pre-
diction time horizon as a T-frame video, where all fields are
masked to zero except the line-shaped region of light source
at the input port, as shown in Fig. 4(b). In this way, the FDTD
prediction task is translated to a masked video restoration task,
given that previous frames and the video patches at the source
location are unmasked hints.

C. Efficient Physics-Inspired Dynamic Convolutional Neural
Operator Architecture

Building on the space-time causality principles outlined in
Section 111 A, our PIC20-Sim model, ¥y, employs local-view
convolutions to constrain the receptive field. The detailed ar-
chitecture is described below.

Convolutional field encoder. PIC20-Sim starts with a con-
volutional encoder to project the previous light fields and in-

cident light sources to a D-dimensional latent space: az (r)—

vo(r),¥r € Q, where aj, = {Ep;Jir} € RTntT)XMxN anq
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vo(r) € RP*M*N " The encoder has two blocks, each con-
taining a point-wise convolution followed by a residual block
of 3x3 depthwise convolution, layer normalization, and the
GELU activation function.

Causality-constrained permittivity-aware convolutional
backbone. The backbone of PIC20-Sim consists of L-layer
residual blocks, each including a depthwise convolution, di-
lated position-adaptive convolution (DPAConv), layer nor-
malization, and GELU activation. A dedicated convolutional
device encoder shown in Fig. 3 takes the inverse of permittiv-
ity map 1/€,(r) as input and extracts a shared local geometry
information f(g!) for guiding all L DPAConv layers in the
backbone to dynamically adapt their kernels through which
we explicitly model the permittivity-dependent wave propa-
gation dynamics.

Figure 5 illustrates a K x K DPAConv module with dy-
namic permittivity-adaptive kernels. Each DPAConv opera-
tion within a size-K window Q(i) at pixel position i is for-
mulated as 7' (i) = Yican (H (£i.1) ()W ())) ). In-
spired by dynamic convolution (PAConv)’, the convolutional
filter weights applied to a sliding window on the feature
map is the Hadamard product of a statically-learned convo-
lutional filter W € RP*P*KxK and a dynamic permittivity-
adaptive kernel 7 (f;,f;)(¢,) € R, shown in Fig. 5. The
dynamic kernel # projects the permittivity features f
into high-dimensional space via a Gaussian kernel function

H (£.£;) (&) = exp (f% (& — )" (f;— fj)), which helps the
model understand light-matter interaction and learn how light

wave propagates dynamically through a path with heteroge-
neous material permittivities.

This dynamic convolution demonstrates strong modeling
capabilities for capturing wave propagation principles. How-
ever, the standard PAConv” presents practical challenges due
to its substantial memory and runtime costs, especially dur-
ing training. As the prediction frames T increase, the re-
quired receptive field and convolutional kernel size increase
linearly. When a large-kernel convolution requires dynamic
position-specific kernels, the memory cost is bottlenecked by
the largest intermediate tensor .# @ W € RP*HXWXKXK ‘e o
when D = 96, H = W = 256, and K = 21, a single tensor
can exceed 10 GB. To alleviate the computational and mem-
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ory burden, we modify this approach by introducing a di-
lated position-adaptive convolution (DPAConv), preceded by
a depthwise convolution to aggregate local features and pre-
vent information loss from dilation. The kernel size K is a
crucial design parameter for DPAConv, as it determines the
model’s receptive field. As shown in Figure 6, insufficient
receptive field size significantly degrades performance. Em-
pirically, we recommend using a receptive field that is 30
pixels larger than the theoretical value for optimal results.
For detailed kernel size selection, please see Appendix A 5

Prediction head. At the end of the model, we simply use two
point-wise convolutions with layer normalization and GELU
in between to project it back to the required prediction frames.

D. Autoregressive Prediction with Multi-Stage Partitioned
Time-Bundling

Time-bundling significantly accelerates predictions by gen-
erating multiple frames in one step, reducing the number of
iterations needed during autoregression’*. However, we ar-
gue that bundling too many timesteps can negatively im-
pact scalability and prediction fidelity. (1) Scalability: As
the number of output frames increases, the required receptive
field expands linearly, resulting in a quadratic increase in pa-
rameter count and computation cost, along with greater opti-
mization difficulty due to larger convolutional kernels. More-
over, predicting more frames demands greater model capac-
ity, meaning the hidden dimension D must also grow. There-
fore, bundling too many frames per iteration is not scalable
for efficient model inference. (2) Prediction Fidelity: Time-
bundling essentially shares the learned encoder and backbone
between different timesteps for efficiency consideration and
inevitably correlates different output frames. Since the cor-
relation between frames gets reduced with a longer timespan,
such sharing can deteriorate the overall prediction fidelity. Be-
sides, bundling too many timesteps in a one-shot prediction
also breaks the temporal causality in light waves, as output
field E[t] strictly should not see any information from future
sources J;11.7. Hence, reducing bundled timesteps by parti-
tioning the frames into multiple stages can largely relax the
scalability and causality issue while still benefiting from the
speed advantages in parallel time-bundled prediction.

Figure 3 illustrates our multi-stage time-bundling approach
for autoregressive prediction. The total predicted fields E.y1
consist of NT frames, which we partition into N stages. In
standard autoregressive prediction, the model Wy is trained in
a single iteration and recurrently generates future fields based
on predictions from the previous stage, encouraging the model
to learn consistent mapping functions across timesteps. How-




ever, this approach assumes ideal prediction fidelity at each
stage. In reality, the first-stage prediction Ej.7 may deviate
from the ground truth E7.;, leading to accumulated roll-out
errors as the inputs for later iterations suffer from distribution
shifts due to earlier prediction inaccuracies. To address this,
we propose two methods to mitigate temporally accumulated
errors.

Stage-dedicated prediction models to mitigate distribution
shift. We use N independent submodels Wy, ,---, ¥y, in the
partitioned N stages to mitigate the distribution shift issue.
Stage 2 to stage N will learn how to align the non-ideal in-
put fields from their previous stage to the ground-truth fields.
In a later evaluation section, we will show the advantages of
independent models in reducing prediction errors while main-
taining high parameters and runtime efficiency.

Cross-stage hidden state propagation to facilitate error
mitigation. While the time locality of Maxwell’s equations
suggests that light fields depend only on recent past fields and
future sources, the non-ideal field predictions from Wg, often
lack sufficient information for W, to fully correct the errors
from the i-th stage. Drawing inspiration from the State-Space
Model, we introduce an additional information path by prop-
agating the encoded hidden states from the backbone of the
i-th stage to the input of the next stage backbone. A point-
wise convolution is used as a lightweight adaptor to compress
the concatenated hidden states back to dimension D.

Light field normalization. Normalization is critical for
model convergence and generalization. Empirically, we find
that using the maximum field intensity to normalize the in-
put fields and source provides the best roll-out error. For a
detailed ablation study, please refer to Appendix A 5.

IV. EVALUATION
A. Evaluation Setup

Benchmarks. We evaluate different methods on three rep-
resentative and challenging photonic device types, including
tunable multi-mode interference (MMI) with complicated in-
terference patterns, micro-ring resonator (MRR) with sensi-
tive coupling and resonance effects, and Metaline with highly
discrete permittivity distributions and fine-grained structures.
Those practical devices pose significant challenges and have
not been evaluated in the literature. We use the open-source
FDTD software package MEEP” to generate the simulation
videos. All videos are resized to have a spatial resolution of
(Ax = Ay = 140nm, A; = 1 fs). Details are in the Appendix V.
Training settings and evaluation metrics. Since all
frames have the same importance in FDTD, we use av-
eraged per-frame normalized L2-Norm as the training loss
function and also evaluation metric, i.e., N-L2Norm =
7 X1 [Wo (Ein &, J10)l1) — EX[ll2/|E*[1]]2.  We use
frames per second (FPS) to evaluate the prediction speed. De-
tailed training settings can be found in Appendix A 6.

B. Main Result

We compare seven models in Table I, including: (1) global-
view Fourier-domain neural operators: FNO', its factorized
variant F-FNO*, the state-of-the-art optical FDFD neural net-
work surrogate NeurOLight'?, and a Koopman neural oper-

TABLE I: Compare different models on 3 benchmarks in
terms of #params, inference speed (FPS), training, and test
error (N-L2Norm). The predicted light fields have 160

frames.
Dataset Model #Params | FPS T Train error |, Test error |

FNO' 340M 8147 0.035 0.122

MMI FfFNQ4 4.5M 4359 0.039 0.070

. KNO o 171.8M 1251 0.188 0.193

e > NeurOLight'*| 2.2M 8180 0.157 0.140
SimpleCNN 3.8M 17524 0.066 0.075

SineNet'” 38M 3414 0.071 0.085

PIC20-Sim 2.4M 15701 0.042 0.052

MRR FNO' 340M 8147 0.033 0.423

= F-FNO* 4.5M 4376 0.028 0.138
N KNO*® 171.8M 1252 0.138 0.179
NeurOLight'*| 2.2M 8190 0.102 0.151

SimpleCNN 7.3M 7646 0.038 0.088

/ SineNet'” 38M 3282 0.044 0.109
b - PIC20-Sim 4.4M 1906 0.025 0.085
Metaline FNO' 146.4M 20047 0.062 0.173
F-ENO* 3.3M 9713 0.053 0.089

. KNO*® 74.6M 2889 0.278 0.268

NeurOLight'*| 1.6M 18413 0.213 0.185

[aULITHR - .

sl ., SimpleCNN 38M 26920 0.112 0.117
SineNet'” 30M 4484 0.114 0.122

PIC20-Sim 2.4M 7348 0.077 0.086
Avg Improv. w/ FNO/SimpleCNN 95.74% 92.92%  53.33% 51.16%
Avg Improv. w/o FNO/SimpleCNN | 40.47% 156.5% 43.47% 42.89%

ator (KNO) designed for time-marching in the linear Koop-
man space’’; and (2) local-view convolution-based neural op-
erators: a 16-layer SimpleCNN with static 2D convolutions,
SineNet'?, which uses a cascaded multi-stage U-Net for tem-
poral modeling, and our proposed dynamic convolutional neu-
ral operator, PIC?0-Sim. For fairness, all Fourier-domain
models are configured to use full modes, allowing them to
learn local spatial operations. The video simulations span
160 fs (i.e., 160 frames), with 10 frames of past input fields
(T, = 10) serving as initial conditions. Detailed model con-
figurations can be found in Appendix A 7. It is noteworthy
that while PIC20-Sim incorporates a strong inductive bias
through the use of dynamic convolutions and controlled re-
ceptive fields inspired by time-domain light propagation prin-
ciples, it remains a purely data-driven model. This is be-
cause no Maxwell residual loss is utilized during training. In
other words, PIC20-Sim is a physics-agnostic model. From
this perspective, the comparison between PIC20-Sim and the
strong baseline models is fair.

Compared to these baselines, on average, our PIC20-Sim
achieved 51.2% less normalized L2-norm error with 95.7%
fewer parameters.

Result in tunable MMI. On tunable MMI, PIC?0-Sim
achieves the most accurate prediction result with only 2.4M
parameters, less than 1% of full-mode FNO. Without the in-
ductive bias of the local spatial receptive field, FNO requires
full frequency modes to learn a causality-aware local window.
This comes at the cost of hundreds of millions of parameters
and optimization challenges in large kernel learning. SineNet,
although it is a U-Net-based model, and the receptive field is
too large due to its multi-scale feature fusion that introduces
too many irrelevant features, shows 60% more error com-
pared to PIC20-Sim. Both SimpleCNN and PIC?0-Sim out-
perform the Fourier-domain and U-Net-based models, which
we attribute to their causality inductive bias. However, Sim-



TABLE II: Compare different task partitioning when
predicting 160 frames. Kernel sizes (KS) are adjusted to
match the suitable receptive field for the predicted frames (7')
per step. Partitioning into 2 stages gives the best results.
Dilation is set to 4 by default

#stages T per stage KS \#Params J FPS 1 Train error | Test error |

1 160 29 ‘ 35M 13793 5.44e-2 6.26e-2
2 80 17 ‘ 23M 6865  4.20e-2 5.13e-2
4 40 11 ‘ 19M 5056  4.70e-2 5.38e-2
8 20 9 ‘ 37M 2603  8.14e-2 8.71e-2

pleCNN, which uses content-agnostic static kernels, demon-
strates slightly lower fidelity than PIC20-Sim, likely due to
the homogeneous permittivity in most parts of the MMI.
Result in MRR. Compared with MMI, MRR is more difficult
as it includes light coupling, feedback loop, and resonance.
Considering that the & in MMR is lower than that in MMI,
which means faster light propagation, we adjusted the recep-
tive field for the CNN-based networks accordingly. Still, there
remains a performance gap of approximately 50% between
the Fourier-domain models, U-Net-based models, and CNN-
based models. Among the CNN-based models, PIC20-Sim
achieved the lowest error while using one of the fewest pa-
rameters.
Result in Metaline. Compared to MMI, Metaline features
highly discrete permittivity distributions with strong scatter-
ing effects, making dynamic convolution essential for accu-
rately capturing wave propagation behavior. Consequently,
we observe a significantly higher prediction error from static
convolutional networks.

On average, our PIC20-Sim achieved 51.2% less test error
with 95.7% fewer parameters, showing the advantages of our
dedicated device encoder and DPAConv-based backbone.

C. Ablation Study and Discussion

Input field frames 7;, and dilation rate s. As a key hyperpa-
rameter, we select 10 frames of input fields E;,, and we choose
a dilation rate of 4 to balance fidelity, speed, and parameter ef-
ficiency. For details, please refer to Appendix A 5.
Multi-stage partitioning in time-bundled prediction. As
shown in Table II, we explored various multi-stage partition-
ing strategies for time-bundled prediction across 160 frames.
Each stage utilizes an independent ¥y model. In the single-
stage approach, the model attempts to predict all 160 frames in
one shot, but this lacks sufficient model capacity to maintain
high fidelity and is not scalable for long-range predictions.
We found that bi-partitioning strikes the best balance be-
tween accuracy and parameter efficiency for generating 160
frames. Too many partitions increase the number of iterations,
leading to significant distribution shifts and error accumula-
tion. Further ablation studies are provided in Appendix A 5.
Cross-stage model sharing and hidden state propaga-
tion. Table III compares different methods of partition, high-
lighting that the best strategy involves passing historical in-
formation, along with the prediction result, between adjacent
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FIG. 7: In a 320-frame prediction task across three
benchmarks, PIC20-Sim achieves the lowest cumulative
error compared to all other models.

independent submodels, from Wq, | to W, Simply iterat-
ing twice, CNN will suffer from a severe distribution shift.
By jointly optimizing two weight-sharing CNNs, the model
is aware of the error accumulation, thus showing better roll-
out errors. Once we relax them to two independent CNNs,
combined with the hidden state that passes more information
to the downstream submodels, we achieve the lowest error in
160 frames of prediction.

TABLE III: Stage-dedicated models with hidden state
propagation give the best 160-frame fidelity.

Hidden state Out frames #Iter‘ Single test err Roll-out test err

A single CNN N/A 80 2 \ 2.13e-2 7.30e-2
2 weight-sharing CNNs X 80+80 1 \ 5.98e-2 5.98e-2
2 independent CNNs v 80+80 1 \ 4.86¢-2 4.86e-2

To further demonstrate PIC20-Sim’s superior performance

in mitigating error accumulation during auto-regressive pre-
diction, we evaluated the average normalized L2-norm per
frame over a 320-frame prediction task across three bench-
mark datasets. As illustrated in Fig. 7, PIC?0-Sim con-
sistently exhibits the lowest error compared to the baseline
models overall, highlighting its effectiveness in long-term se-
quence modeling.
Key components in PIC20-Sim architecture. Table IV
shows the performance of different network settings to predict
80 frames of the light field, where we progressively transform
to our proposed PIC20-Sim. We start with a simple CNN, us-
ing the lifting layer from FNO' as the encoder. By replacing
this with our custom convolutional encoder, we observe a 29%
reduction in test error. Next, introducing a dilation factor of 4
and adding a depth-wise convolution to aggregate local infor-
mation reduces the parameter count by a factor of 10 despite
only increasing the error by 2.3%. Further improvements are
achieved by partitioning the model into two independent sub-
models, each with a halved kernel size, resulting in a 17.4%
reduction in prediction error. To further refine the model, we
propagate an additional hidden state to the second network
for error compensation, which enhances fidelity by another
6.1%. Finally, replacing the dilated CNN with our DPAConv
layer introduces permittivity awareness, yielding the best per-
formance with just 1M parameters.



TABLE IV: Ablation study on PIC20-Sim. Starting from a
SimpleCNN with a Lifting field encoder and Conv2d
backbone, we progressively add/modify one component. We
adopted 72 channels here instead of 36 channels in Table I

‘#Params | FPS 1 Trainerr | Testerr |

SimpleCNN (Lifting Enc.+Conv Backbone) ‘ 12M 3293 2.52e-2  3.00e-2
+Convolutional Field Encoder \ 12M 3235 1.74e-2  2.13e-2
+Dilated Conv Backbone \ 1.IM 7058 1.79¢-2  2.18e-2
+Bi-part. w/ Stage-dedicated Models (W, , Wg,) ‘ 0.9M 5125 1.55e-2  1.80e-2
+Cross-stage Hidden State Propagation ‘ 09M 5065 1.52e-2 1.69e-2
+Device Enc.+DPAConv Backbone (Final) ‘ M 4560 1.43e-2  1.59e-2

V. CONCLUSION AND LIMITATION

In this work, we present a physics-inspired causality-
aware Al-accelerated FDTD solving framework PIC20-Sim
for ultra-fast photonic device simulation. We thoroughly ana-
lyze and integrate physical constraints into our model design,
respecting space-time causality and permittivity-dependent
wave propagation principles. Cross-iteration error mitigation
techniques have been proposed to compensate for the distri-
bution shift issue during time-bundled autoregressive predic-
tion with balanced scalability, long-term prediction fidelity,
and efficiency. Compared to SoTA Fourier-based and con-
volutional neural operators on three challenging photonic de-
vice types, our PIC20-Sim outperforms them with 49.1% less
prediction error and 23.5 times fewer parameters. Addition-
ally, 133~310x or 31~89x speedup has been demonstrated
over open-source single-process or 8-process parallel FDTD
solvers on average. One potential limitation is that our frame-
work still observes rapidly accumulated errors with large-
iteration rollout even though we have various error suppres-
sion methods. As a future direction, error suppression during
auto-regressive prediction or even a completely new formu-
lation beyond auto-regression will be further investigated to
support long timespan optical FDTD simulation.

VI. DATA AVAILABILITY

The data that support the findings of this study are openly
available in PIC2O-Sim, reference number”’.

Appendix A: Appendix
1. Optical Simulation Details

For T M* polarized electric field, the FDTD updating rule is
shown as follows:

1 1
HIT? m,rH—l =H? m.rH—l —$(E?[m.n+l]—E?[m,n])
2 2] ot I8, :
g+l 1 -1 1 A
H 2 \m+ = on :H;’z m+ =,n +71(E5[m+1,n]7Ef[m,n])
’ 2 2 wlm+3,njA " N

(A1)
in which the m, n, g represent discrete counterpart of x, y, and
t in continuous domain. The % shown in the index refers to

the points at the middle point of edges in Yee’s grid.

2. Motivation for Full-wave Prediction

As depicted in Section. I11 B | and 111 B 3, PIC20-Sim pre-
dicts the fields instead of specific quantities. The reasons are
three-fold:

* Enhanced Generalization and Versatility. Indeed,
some prior work has demonstrated neural network pre-
diction of specific device responses (e.g., power split-
ting ratio for splitters). This is a much simpler task than
EM field prediction but highly ad-hoc, not generaliz-
able, and not interpretable. It requires retraining if the
target metric or design variable changes. In contrast,
we want to explore the capability of Al for scientific
PDE-solving tasks for more generic tasks, i.e., learn
to solve a family of parametric time-domain Maxwell
PDEs. Specifically, our proposed model is designed to
predict the entire field, enabling seamless application
to a wide range of tasks without the need for retraining.
This holistic approach ensures the model’s utility across
diverse scenarios, making it a more efficient, versatile,
and explainable solution in the long run.

Critical for Adjoint Inverse Design Applications.
Predicting the entire field is indispensable for adjoint in-
verse design tasks as the adjoint gradient requires elec-
trical fields of the forward and adjoint simulation. If a
model only predicts fields on an output port, the adjoint
method cannot be employed for inverse design. To em-
brace and enable the power of Al-assisted adjoint opti-
mization in the future, we are motivated to push toward
full wave prediction capability in the entire domain.

Improved Model Explainability. Comprehensive field
prediction enhances the interpretability of the model.
Visualizing the electric field’s propagation throughout
the device allows designers to gain valuable insights
into the physical mechanisms underpinning device op-
eration. This understanding is instrumental in refin-
ing and optimizing device designs, fostering a more in-
formed and iterative development process.

In summary, the ability to predict the entire field is not only
foundational for generalization and task versatility but also
crucial for supporting advanced applications such as adjoint
inverse design and improving the interpretability of simula-
tion outcomes.

3. Speedup Justification

When evaluating the speed-up, we did not count the time
on data generation and model training; instead, the speed-
up reported is the comparison between the inference time of
PIC?0-Sim and simulation time of MEEP for the same sim-
ulation tasks. To be specific, the task is to simulate/predict
160 fs of fields and then calculate the DFT field of the central
frequency out of the simulated/predicted fields.

The trained model is expected to perform inference tasks on
many different simulation instances as it is a neural operator
that learns to solve a family of parametric Maxwell PDE, not a


https://github.com/ScopeX-ASU/PIC2O-Sim

single simulation instance. Hence, the dataset generation time
and model training time can be largely amortized and thus is
not included in runtime comparison.

It is a very good suggestion to include the time cost for
dataset collection and model training. We used MEEP for
FDTD simulation. As a rough estimation, it took 1 hour to
generate the MMI dataset, where 100 FDTD simulation in-
stances were performed, and 10 hours to train our model on a
single NVIDIA A6000 GPU.

As shown in Fig. 1(a), our model inference is at least 31 x
faster than MEEP FDTD simulation. Assume we use our
model to predict 3200 simulation instances for small devices,
it totally takes around 320-480s for PIC20-Sim and 800 min
(above 13 hours) for MEEP. The saved time already exceeds
the dataset generation and model training cost, which proves
that data-driven neural operator training will pay off.

4. Dataset Generation

For MMI, we randomly generate 20 devices to train and 5
devices to test. For MRR, as it is longer than that of MMI
and Metaline, we generate 6 devices to train and 5 to evalu-
ate. For Metaline, 32 devices to train and 8 devices to test,
based on the variable settings and distributions in Table V.
Each device has an individual simulation for each input port.
MMIs sweep over 3 ports and generate a total of 75 simulation
videos; MRRs only have 1 input port and generate a total of
11 simulation videos (much longer); Metalines sweep over 3
ports and generate a total of 120 simulation videos. The time
interval between two frames is 1 fs, i.e., A, = 1 fs.

How to sample video patches as training/validation/test
dataset. First, according to different device types, we select
different numbers of devices for train and testing, as demon-
strated above. During training, for each example, we ran-
domly select one device and one port and slice a video seg-
ment. The video segment has a randomly sampled starting
frame index of i. E;;,7,, will be the input fields. When sam-
pling the starting frame index of i, considering the imbalanced
temporal distribution of the source, which means that the
source only exists within the first 560 frames approximately,
we attribute more probability to sample the starting frames be-
fore 560 frames. To be specific, for MMI and Metaline, start-
ing frames that contain a source have twice the probability of
being sampled, and for MRR, since the video is much longer
than that of MMI and Metaline, the starting frames have 6
times the probability of being sampled. Sources Jz;,.7;, +7 Will
be extracted from E7,,.7, .7 at the input port region. E7, .7, +7
serves as the target fields. Examples across epochs are totally
randomly sampled.

For validation and inference, we uniformly slice the videos
with an offset of 16 frames, i.e., i = 0,16,32,---. We do
not resample the starting frames with sources in validation
and test. All video slices have bilinear interpolated to have
the same spatial resolution (A, = A, = 140nm). Since our
mini-batch size during training and inference is, no padding is
added.

TABLE V: MMI, MRR, Metaline device configurations in
dataset generation.

| Value/Distribution

‘ Unit

Variables
| Tunable MMI 3 x 3 MRR Metaline 3 x 3 |
Length (20, 30) (8, 10) um
Width U (5.5,7) - Length um
Radius - u(5,15) - um
Port Length 3 1 3 um
Port Width (0.3, 1.0) (0.5, 0.8) %(0.8,1.0) | um
Taper Length 2 - 2 um
Taper Width Port Width+0.3 - Port Width+0.3 | um
Ring Bus Width - (0.5, 0.8) - um
Bus Waveguide Gaps - (0.1, 0.15) - um
#Slots - - 1.4%Length | um
Spacing - Length/3 um
Wslot - % (0.1,1) um
hgior - %(0.2,0.25) | um
Border Width 1 1 1 um
PML Width 2 2 2 um
Wavelength range [1.4,1.65] [1.4, 1.65] [1.4,1.65] um
Ecladding, €7 {2.07, 12.11} {1,6} (2,07, 12.11} | -
Video frames 833 [800*Radius/3] 600 fs
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FIG. 8: (a) Input fields with T;, = 10 gives the lowest
prediction error on MMI. (b) The total roll-out error
dominates one single prediction.

5. Hyper-Parameter Selection

How to determine kernel size K. Kernel size K is the key
design parameter for DPAConv that determines the receptive
fields of the model.

To predict the fields after T timesteps, aware of space-
time causality, we estimate the furthest distance the wave can

propagate in the medium as R = Zg C\"/:J. Since most light

fields are confined in the waveguide region, we use the rela-
tive permittivity of the waveguide &, to calculate the theoret-
ical receptive field R ~ Tc Empirically, we recommend

gt
a 30 pixels larger receptive field than the theoretical value
R~ -1 1 30 to obtain the best fidelity as shown in Figure 9

in which we sweep the receptive field for different timesteps
to predict. Then, each PAConv is assigned to have a receptive
field of [(R —5)/L], where 5 is the RF of the field encoder.
With a dilation factor of s, the kernel size of the DPAConv is
set to K = [823], and the kernel size of the precedent depth-
wise convolution is set to s+ 1. The device encoder should
extract features of the permittivity map along the optical path
toward the center pixel, as illustrated in Figure. 5. Hence, we
set the receptive field of the device encoder to K.

Frames of input light field E;,. PIC20-Sim takes the light




TABLE VI: Compare different dilation factors s on Conv2d
layers in a SimpleCNN and MMI dataset in terms of
parameter count, runtime, and prediction error (N-L2Norm).
Kpwconv, Kcony represents kernel size for depthwise
convolution and Conv2d. The receptive field roughly remains
the same (17~23). We select s=4 to balance efficiency and
fidelity.

Kpwcony Kcony § ‘#Params } FPS 1 Train error | Test error |

N/A 17 1 ‘ 12M 3235 1.74e-2 2.13e-2
3 9 2 ‘ 3.5M 3415 1.65e-2 2.04e-2
5 5 4‘ 1.IM 7058  1.79e-2 2.18e-2
9 3 8‘ 05M 9417  191e-2 2.29¢-2

fields E;, from previous timesteps as the initial condition for
field prediction. Given the time locality that we analyzed in
Section 11 A, theoretically, two frames (7}, = 2) should pro-
vide sufficient information to obtain the current field distribu-
tion to calculate the time derivative JE/dt using first-order
finite difference in the Maxwell equation, which indicates the
light propagation direction. Fig. 8(a) investigates the impacts
of input frames on the prediction error. We find out that a
small number of frames fail to provide enough information
for the neural operator to capture the effective initial condi-
tion. At least 8-10 frames are required for the model to deliver
low prediction errors. Note that more timesteps in the input
light fields are harmful since the provided information from
the further past is irrelevant and useless due to time locality.
Multi-stage partitioning in time-bundling. Time bundling
is preferred to reduce the iteration times during the auto-
regression. As shown before, there is a trade-off between the
speed and memory for different output frames since the output
frames are directly related to the kernel size. In addition, an-
other trade-off is between the single prediction accuracy and
roll-out prediction accuracy. Fig 8(b) shows the average nor-
malized L2-Norm of the entire 160 frames prediction. Fewer
output frames make it an easier task and, hence, a smaller
single prediction error. However, the fidelity benefit obtained
from a smaller prediction frame count vanished quickly. For
the 160-frame prediction task, the 80 output frames model
achieves the best rollout error.
Efficiency-fidelity trade-off in convolution dilation factor.
As convolution kernel size increases, especially for dy-
namic PAConv, the computation and memory cost increase
quadratically. We explore the efficiency-fidelity trade-off with
different dilation factors s in Table VI. Dilated convolution
could speed up the training process dramatically, and com-
bined with a depth-wise local information aggregation con-
volution, and it also achieves high fidelity. TableVI shows
different dilation strategies with the same equivalent receptive
field. Considering the trade-off between fidelity, speed, and
parameter efficiency, we choose 4 as the dilation rate.
Light field normalization. To increase the generalization and
convergence of the model, irrelevant information related to
field intensity (light brightness) needs to be normalized. Be-

10

Model PIC20 Sim
Norm in device encoder | train error | test error | batch size
None 1.42E-02 | 1.61E-02
Batch norm 1.43E-02 | 1.57E-02 1
Layer norm 1.43E-02 | 1.59E-02
None 1.47E-02 | 1.64E-02
Batch norm 1.50E-02 | 1.67E-02 2
Layer norm 1.44E-02 | 1.60E-02
None 5.15E-02 |5.33E-02
Batch norm 4.95E-02 |5.14E-02 16
Layer norm 5.41E-02 |5.69E-02

TABLE VII: The smaller the batch size, the better the
performance, there is no obvious difference between different
normalization techniques

sides, proper normalization is crucial to minimize error ac-
cumulation in autoregressive prediction. A common method
used in PDE learning tasks is to normalize the input field to
standard normal distribution per channel and de-normalize
the model output using the calculated statistics. However,
this method does not apply to optical FDTD problems with
a Gaussian light source where the resultant light field distri-
bution has high spatial and temporal sparsity. We also ob-
serve huge intensity discrepancies across space, time, and data
samples. We evaluate different normalization methods on a
160-frame roll-out test in Fig. 10. Subtraction of the mean
value is not involved in all the normalization methods since
the mean of the wave is already zero. To be specific, the
first one, 15*std, means that instead of using one standard de-
viation, we use 15 times of standard deviation to normalize
the field since the field are sparse in the devices especially in
MRR. Using one standard deviation will make the range to
be too large. Second, in regional standard deviation, we first
determine the wave propagating region by the average energy
and then only calculate the standard deviation within the re-
gion for normalization. The avgpool max refers to the method
where we first pick the frame among all the input frames that
contains the maximum electric field values. And then reduce
the spatial dimension by 8 times. Finally pick the maximum
value in the reduced frame. The avgpool 99.95% max is al-
most the same as the avgpool max except that instead of pick
the maximum electric field value in the reduced frame, in this
method, we pick the 99.5% quantile maximum value to leave
some margin for outliers. The method called max is straight-
forward, just pick the maximum absolute electric field value
in the input frames to normalize. The 99.95% max refers to
the method that is almost the same with the former one ex-
cept instead of using the maximum absolute value to normal-
ize, the 99.95% employs the 99.95% quantile to leave some
margin for outliers. Statistics based on standard deviation or
99.95% quantile show high roll-out error. Normalizing by the
maximum absolute field intensity (max) gives the best roll-out
fidelity.

Normalization in Device Encoder. In the device encoder, we
adopt the LayerNorm as the normalization technique. The ra-
tionale of using layernorm is that (1) layer norm is often used
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FIG. 10: Using max abs. value to normalize and restore the
prediction shows best N-L2norm in one-step roll out on
MMI.

when different samples have distinct statistics (e.g., light in-
tensity here), especially in dense prediction tasks, while batch-
norm is often used in classification models to capture group
statistics). (2) BatchNorm has stability issues with small batch
sizes in the literature, as the running statistics (mean/std) are
based on a mini-batch. Since we have a relatively small
amount of data and the data has relatively large spatial res-
olution, we use a small mini-batch size for memory efficiency
consideration during training and improve generalization due
to more stochasticity in small-batch gradients. Hence, we
choose to use layer norm by default. To give a more thor-
ough investigation, as shown in Table. VII, we conduct an
ablation study on the normalization layer types used in the
device encoder, with different normalization layers and batch
sizes. Note that the learning rate is proportionally scaled as
batch size increases. Compared to larger batch sizes (such as
16), smaller batch sizes (1 or 2) provided better performance.
LayerNorm shows the best results, but there is no significant
difference between different normalization options. For our
model, the encoder is robust for different normalization layer
type selections.

Choice of Time Step between Frames. One of the key advan-
tages of PIC20-Sim over the FDTD method is that the conver-
gence of FDTD heavily depends on a high-resolution Yee grid
and adherence to the Courant-Friedrichs-Lewy (CFL) condi-

Model |Time step (fs) |# frames | Pred. range (fs) | Train err | Test err
. 1 160 160 0.042 | 0.052
PIC20-Sim 2 160 320 0.117 | 0.119

TABLE VIII: Ablation study on time step on benchmark
MMI, smaller time step shows better accuracy

tion. In contrast, PIC20-Sim can directly predict field values
on a given mesh without being constrained by the CFL con-
dition, leading to significantly faster computations. Although
PIC20-Sim is not constrained by the CFL condition, this does
not mean that the time step between adjacent frames can be
chosen arbitrarily. Beyond the Nyquist sampling limit, there
is a trade-off between efficiency and accuracy. A smaller
time step simplifies the learning task by limiting the wave’s
propagation distance between frames but reduces efficiency,
whereas a larger time step enhances efficiency at the cost of
accuracy, as the wave travels a greater distance per step. To in-
vestigate this trade-off, we conducted an ablation study on the
influence of time step selection. In our experiment settings,
the period of light is 5.2 fs, meaning that the maximum al-
lowable time step is 2.6 fs according to the Nyquist sampling
criterion. As shown in Table VIII, smaller time steps yield
higher accuracy compared to larger ones.

6. Training/Inference Settings

We adopt Adam optimizer with an initial learning rate of
2e-3, following a cosine learning rate decay schedule and a
minimum learning rate of 1e-5 for all the baselines except for
the SineNet for which we use the suggested initial learning
rate 2e-4 by its author and ended at 1e-6 All models are trained
and evaluated on two servers with 8§ NVIDIA A6000 GPUs.
The runtime for all neural network models is averaged across
5 runs per photonic device in the test dataset. The runtime
for the CPU numerical FDTD solver MEEP is evaluated on a
64-core AMD EPYC 7763 64-Core Processor.

7. Model Architecture Details

We compare our method with SoTA Fourier-domain neural
operators and CNN models. We set a full mode for Fourier-
domain neural operators to enable them to learn local window
operations. For CNN models, we maintain similar layers and
the number of parameters for fair comparison. And for Fourier
kernel integral operation models, we try to choose as many
modes as possible to capture the local wave behavior.

FNO': We construct a 4-layer FNO with Fourier modes of
(128, 128), hidden channel of 36. The total parameters are
340M for FNO and MRR. For Metaline, the data are padded
to 168, so the full mode is (68, 68), with a hidden channel of
36; the total parameters are 146M.

F-FNO": We construct a 12-layer F-FNO whose modes, for



MMI and MRR that padded to 256 x 256 is (128, 129) and
for metaline which is padded to 168 x 168, is (84, 85). The
number of parameters is 4.5M and 3.3M, respectively.
KNO’°: We construct a 2-layer KNO whose modes, for MMI
and MRR that padded to 256 x 256 is (128, 129) and for Met-
aline which is padded to 168 x 168, is (84, 85). The number
of parameters is 171.8M and 74.6M, respectively.
NeurOLight'*: We construct a 6-layer NeurOLight whose
modes, for MMI and MRR that padded to 256 x 256 is (128,
129) and for Metaline which is padded to 168 x 168, is (84,
85). The number of parameters is 2.2M and 1.6M, respec-
tively.

SimpleCNN: We construct a 16-layer SimpleCNN. The ker-
nel size is set to be 15 for MMI, and Metaline has the same
€, and hence the same required receptive field and the kernel
is set to be 21 for MRR due to the high-speed light because
of the relatively small &,. The number of channels is set to 32
so that the number of parameters is within a reasonable range,
which is 3.8M for MMI and Metaline and 7.3M, respectively.
SineNet'”: We construct a SineNet with 8 waves for MMI and
MRR whose was padded to 256 x 256, the number of down-
sampling and upsampling blocks in each wave is 4, and the
initial hidden channel is 24 so that the number of parameters
keeps reasonable. For Metaline, to cooperate with its size,
which is 168 x 168, we changed the number of downsampling
and upsampling blocks to 3 in each block, and to compensate,
we set the initial channels to 42, and the number of parameters
is 30M.

PIC20-Sim: For the device encoder, we use a single convo-
lution layer by a depth-wise convolution layer followed by
layer normalization in ConvNeXt”® style and GELU, a skip
connected is added connecting from input of the depth-wise
convolution to the end of GELU. Then, the above structure
is copied once and cascaded together to form our device en-
coder. The output channel for the four convolutional layers is
1 — 72— 72 — 48 — 48. For MMI and Metaline, the kernel
size is [3 3 5 5], and for MMR, the kernel size is [5 5 5 5]. The
device encoder is padded with replicate mode. For the field
encoder, we use almost the same configuration as the device
encoder except for the number of channels; the channels are
now becoming # of input fields + # of sources — 72 — 72 —
72 — 72. The kernel size becomes [1 3 1 3], and the fields
are padded using zero padding. For the hidden state adaptor,
we use a single point-wise convolution, with input channels
of 724+72=144 and output channels of 72. For the backbone,
we use 8 layers. For MMI and Metaline, each layer has a lo-
cal aggregation depth-wise convolution layer whose channel
number is 72 and kernel size equals 5, a DPAConv layer with
kernel size 5 and dilation 4 to provide enough receptive field
followed by layer normalization and GELU, all these mod-
ules are included within skip connection. For MRR, the ba-
sic structure remains the same except for the kernel size for
DPAConv, which becomes 7 to provide a wider receptive field.
For the decoder, we use two point-wise convolutional layers
in which the first one lifts the D-dimension feature to a 512-
dimension vector and the second one projects it back to the
required output frames, in our case, 80. The total parameters
are 4.4M for MRR and 2.4M for MMI and Metaline.
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FIG. 11: PIC20-Sim Visualization on Metaline, sampled
every 40 frames

8. Prediction Result Visualization

In this section, we select the best-performed baselines and
our PIC20-Sim to show their performance in 160 frames pre-
diction on different devices. We sampled the 160-frames
whole video every 40 frames, and to make the error more ob-
vious, and the error is plotted with a smaller scale from -0.02
to +0.02

Figure 12 shows the visualization of the 160 frames predic-
tion of the selected baselines and PIC20-Sim on MMI. Since
the relatively simple structure, the error among all the base-
lines is small. However, there is still an obvious performance
gap between PIC?0-Sim and other well-performed baselines.

Figure 13 shows the visualization of the 160 frames pre-
diction of the selected baselines and PIC20-Sim on MRR in
which a pulse of light is propagating through the slim ring
waveguide and coupled to the straight waveguide. More com-
plicated devices raise more challenging tasks for these surro-
gates. FFNO suffers from the Fourier integral operation and
shows huge errors. SineNet also performed badly due to the
irrelevant features. CNN-based operators obtained better fi-
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delity, and the PIC20-Sim, due to its physics causal dynamic
kernel, has a slightly better performance than SimpleCNN.

Figure 11 shows the visualization of the 160 frames pre-
diction of the selected baselines and PIC?0-Sim on Met-
aline. The Metaline has the most complicated structure, which
causes the larger performance gap between PIC20-Sim and
SimpleCNN as expected.

9. Potential Applications

PIC20-Sim is particularly well-suited for scenarios where
long simulation times are required, but waiting for the full
decay of all signals is impractical. One representative exam-
ple is the FDTD simulation of high-Q resonators, where long
runtimes are necessary for the field to decay to a sufficiently
small value, making the computation expensive. However, in
high-Q resonators, the field typically follows an exponential
decay, given by E(t) ~ Ege~ ™. This suggests that it is possi-
ble to simulate only the early stages of field evolution and ac-
curately extrapolate the full decay behavior. PIC20-Sim can
be especially beneficial in such cases, significantly reducing
computational costs while maintaining accuracy.

10. Limitations and Future Directions

Although PIC20-Sim demonstrates the best prediction fi-
delity among the strong ML-based PDE surrogate solver
baselines, we still observe error accumulation during auto-
regressive predictions that currently cannot support end-to-
end FDTD simulation over arbitrarily long time frames. The
source of the accumulated error in roll-out long-range predic-
tion can be categorized into neural network function approx-
imation error, model generalization error, and optimization-
induced error. Future directions to push toward Al-enabled
optical simulation include better model architecture (ansatz)
with strong inductive bias for better PDE representation, new
formulation besides simple autoregression to suppress tem-
poral error accumulation, and better optimization methods to
ensure robust model learning to distribution shifts during pre-
diction.
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