Towards Area-Efficient Optical Neural Networks: An FFT-based Architecture

Jiaqi Gu¹, Zheng Zhao¹, Chenghao Feng¹, Mingjie Liu¹, Ray T. Chen¹, David Z. Pan¹ ¹University of Texas at Austin

Multi-layer Perceptron Inference	Proposed ONN Architecture	Hardware Utilization Analysis
• Input • Vector x • Output • Vector $y = \sigma(W \cdot x)$ • Objective • Accuracy		SVD-based Architecture ($W \in \mathbb{R}^{m \times n}$) $#DC_{SVD} = m(m-1) + n(n-1) + max(m,n)$ $#PS_{SVD} = \frac{m(m+1)}{m(m+1)} + \frac{n(n-1)}{m(m-1)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input : : · · · · · · · · · · · · · · · · ·	$T\Sigma U-based Architecture (W \in \mathbb{R}^{m \times n})$ $\# DC_{max} = n(n + 1) + max(m n)$
		$\#PS_{T\Sigma U} = \frac{n(n+1)}{2}$

Ours Architecture ($W \in \mathbb{R}^{m \times n}$, block = k)

$$#DC_{\text{Ours}} = \frac{mn}{k} (\log_2 k + 1)$$
$$#PS_{\text{Ours}} = \frac{mn}{k} (2\log_2 k + 1)$$

Experimental Results

Training Curve

8 y_2 y_3 y_0 y_1 y_2 y_3 y_0 y_1 y_0 y_1 y_2 y_3 y_0 y_1 $y_2 y_3$

(1,0,0,1)

 \otimes

 \otimes

 y_2

(1,0,0,1)

 y_3

 \otimes

 y_0

3.2

Model 3

 y_3

(1,1,1,0)

X

 y_1

(1,1,1,0)

 \mathcal{Y}_0

2.9

1.9

Model 4

1.6

1.0

 \otimes

 $y_2 y_3$

Advances in Network Pruning

Network slimming with pruning techniques

Non-structured pruning

- Random zero entries
- Irregular •
- Structured pruning • Zero entries in group

 $\rightarrow \sigma \rightarrow Y_2$

 $\rightarrow \sigma \rightarrow Y_3$

- Regular
- Hardware-friendly

Software innovation

- End-to-end training flow to perform structured
- pruning based on Group Lasso regularization
- Incremental method avoid accuracy degradation

Conclusion and Future Work

- New architecture to save optical component for better area efficiency
- Enable structured pruning to optical neural networks for network slimming without accuracy degradation
- 2.2~3.7x better area cost than SVD-based architecture
- May extend to OCNN and other compact NNs
- Considering more practical hardware information

Source code: https://github.com/JeremieMelo/fft-on

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering

