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⧫ ML models and dataset keep increasing -> more computation demands

› Low latency

› Low power

› High bandwidth

AI Acceleration and Challenges
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Autonomous Vehicle Data Center

⧫ Moore’s law is challenging to provide higher-performance computations



⧫ Using light to continue Moore’s Law

⧫ Promising technology for next-generation AI accelerator

AI Acceleration and Challenges

[Shen+, Nature Photonics 2017]
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Optical Neural Networks (ONN)

⧫ Emergence of neuromorphic platforms for AI acceleration

⧫ Optical neural networks (ONNs)

› Ultra-fast execution speed (light in and light out)

› >100 GHz photo-detection rate

› Near-zero energy consumption if configured

[Shen+, Nature Photonics 2017]
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⧫ Unsatisfactory hardware area cost

› Mach-Zehnder Interferometers (MZI) are relatively large

› Previous architecture costs lots of MZIs (area-inefficient)

› Previous architecture is not compatible with network pruning



Previous MZI-based ONN Architecture

⧫ Map weight matrix to MZI arrays

⧫ Singular value decomposition
›

› U and V* are square unitary matrices

› Σ is diagonal matrix

⧫ Unitary group parametrization

›

› Rij is planar rotation matrix

› Rij with phase     can be implemented 

by an MZI
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Previous MZI-based ONN Architecture

⧫ Slimmed ONN architecture [ASPDAC’19 Zhao+]

⧫ TUΣ decomposition

› T is a sparse tree network for dimension matching

› U is a square unitary matrix

› Σ is diagonal matrix

⧫ Use less # of MZIs

⧫ Limits: only remove the smaller unitary
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[ASPDAC’19 Zhao+]



Our Proposed FFT-ONN Architecture

⧫ Efficient circulant matrix multiplication in Fourier domain

⧫ 2.2~3.7X area reduction

⧫ Without accuracy loss

ST/CT: Splitter/Combiner tree (Signal Fanout/Accumulation)

OFFT/OIFFT: Optical FFT/IFFT (Fourier Domain Transform)

EM: Element-wise multiplication (Weight Encoding in Fourier Domain)
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Block-circulant Matrix Multiplication

⧫ Not general matrix multiplication

⧫ Block-circulant matrix: each k x k block is a circulant matrix 

⧫ Efficient algorithm in Fourier domain

⧫ Comparable expressiveness to classical NNs. [ICLR’18 Li+]
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OFFT/OIFFT

⧫ Basic structure for 2-point FFT

› 2 × 2 directional coupler

› −𝜋/2 phase shifter

9



Weight Encoding

⧫ Multiplication in Fourier domain

› Attenuator: magnitude modulation

› Phase shifter: phase modulation

⧫ Enable online/on-chip training

› No complicated decomposition

› Gradient backprop. friendly

⧫ Splitter tree: fanout

⧫ Combiner tree: accumulation

› Fewer # of crossings: 𝑂(𝑛)
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⧫ Two-phase structured pruning

› Group lasso regularization

› Save 30% - 40% components

› Without accuracy loss (<0.5%)

Masked Weight

ONN Structured Pruning Flow

Pruning Mask 𝑴

Masked 4 x 4 block eliminates the 

corresponding hardware
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Training Curve

⧫ Same convergence speed as w/o pruning

⧫ Negligible accuracy loss (<0.5%)
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Pruning-compatibility Comparison

⧫ Direct pruning
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⧫ No accuracy loss

⧫ Indirect and complicated 

⧫ Severe degradation



Experimental Results

⧫ 2.2~3.7X area cost reduction on various network configurations

⧫ Similar accuracy (<0.5% diff)
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SVD: [Shen+, Nature Photonics 2017]    TΣU: [Zhao+, ASPDAC 2019]
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Simulation Validation

⧫ Lumerical INTERCONNECT tool

⧫ Device-level numerical simulation 
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Simulation Validation

⧫ Lumerical INTERCONNECT simulation (<1.2% maximum error)

› 4 x 4 identity projection

› 4 x 4 circulant matrix multiplication
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FFT-based ONN Summary

⧫ A new ONN architecture

› Without using MZI

› 2.2X ~ 3.7X lower area cost

› Near-zero accuracy degradation

⧫ Fourier-domain ONN

› Efficient neuromorphic computation using Fourier optics

› Better compatibility to NN compression

› Enable on-chip learning
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Extension and Potential

⧫ Beyond classical real matrix multiplication

› Enhanced expressiveness w/ latent weights in the complex domain

⧫ Beyond 1-D multi-layer perceptron

› Extensible to 2-D frequency-domain optical convolution neural network

⧫ Beyond inference acceleration

› Efficient on-chip training / self-learning
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Future Directions
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Design for better robustness: FFT non-ideality; weight-encoding error

On-chip training framework for FFT-based ONN architecture

Chip tapeout and experimental testing
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