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Abstract— With the recent advances in optical phase change ma-
terial (PCM), photonic in-memory neurocomputing has demonstrated
its superiority in optical neural network (ONN) designs with near-zero
static power consumption, time-of-light latency, and compact footprint.
However, photonic tensor cores require massive hardware reuse to
implement large matrix multiplication due to the limited single-core scale.
The resultant large number of PCM writes leads to serious dynamic
power and overwhelms the fragile PCM with limited write endurance.
In this work, we propose a synergistic optimization framework, ELight,
to minimize the overall write efforts for efficient and reliable optical
in-memory neurocomputing. We first propose write-aware training to
encourage the similarity among weight blocks, and combine it with
a post-training optimization method to reduce programming efforts
by eliminating redundant writes. Experiments show that ELight can
achieve over 20× reduction in the total number of writes and dynamic
power with comparable accuracy. With our ELight, photonic in-memory
neurocomputing will step forward towards viable applications in machine
learning with preserved accuracy, order-of-magnitude longer lifetime, and
lower programming energy.

I. INTRODUCTION

Optical neural networks (ONNs) [1]–[11] are widely studied as a
promising neurocomputing paradigm with ultra-high speed, ultra-low
energy cost, and high bandwidth to satisfy computation demands of
machine learning applications. Recent work [12], [13] demonstrates
that phase change material (PCM) can be used to build photonic
tensor cores (PTCs) for optical in-memory matrix multiplication.
PCM cells are programmable with non-volatile states as a weight
encoding mechanism. By shining light through waveguides integrated
with configured PCMs, light-matter interactions will change the
amount of light transmission passively, thus achieving in-memory
multiplication with near-zero static power. Moreover, the broadband
transmission of PCMs enables massive parallelism with wavelength-
division multiplexing (WDM). Holding above superiority, PCM-
based PTCs open a new pathway towards efficient in-memory neu-
rocomputing via photons.

However, PCM-based photonic in-memory neurocomputing still
encounters practical barriers before truly viable for efficient inference
acceleration. Firstly, current PCM cell designs support only limited
bit-width data imprint. In [12], a reasonable implementation of b-
bit PCM cell with low programming complexity is proposed for
PTCs, with demonstrated 4∼5-bit storage. It is equivalently realized
by patterning 2b−1 identical PCM wires on the same waveguide,
as shown in Fig. 1a. Each wire represents binary phase states by
completely crystallization or amorphization, individually switched
via electrothermal heating, thus allowing total 2b nonlinear transmis-
sion levels. Hence, a specialized quantization strategy that suits the
unique transmission level distribution is in high demand to preserve
the ONN accuracy on the above low-precision PCM-based PTCs.

Besides limited bit-width, the potential frequent weight repro-
gramming during inference also raises critical issues in PCM-based
photonic in-memory computing. Massive reuse of PTCs is required
due to the limited scale of PTC compared to the weight matrix, e.g.,
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Fig. 1: (a) Multi-level photonic memory cell based on PCM wires. (b)
Accuracy comparison of models with/without a fixed ratio of aged cells.

a 64× 64 PTC is already quite large. The resultant massive weight
updates in PTCs potentially threaten PCM wires at a high risk of over-
utilization, given limited write endurance of PCM, ranging from 106

to 108 [14]. Once PCM wires are aged and lose reprogrammability,
the implementable transmission range will degrade, and the physical
value will deviate from the desired value, leading to severe accuracy
drops, shown in Fig. 1b. Moreover, the massive reprogramming has a
non-trivial dynamic energy cost, which dilutes the energy efficiency
benefits from PCM. The above issues are related to two key metrics:
(1) The average utilization of PCM wires indicated by the total
number of write operations (# total writes); (2) The maximum number
(# max writes) of write operations over a single PCM cell in one PTC.

In this work, we propose a synergistic aging-aware optimization
framework ELight to tackle the issues. Based on an augmented
redundant write elimination strategy, we devote to trimming down
redundant writes on PCM wires in photonic memories during weight
updates so as to reduce # total writes and # max writes. Aware of
the block pattern of weight reloading, we first propose a write-aware
training method to orchestrate the higher similarity among weight
blocks to increase the eliminable redundant writes. Then post-training
optimization is applied to reduce the number of writes further. The
main contributions of this paper are listed as follows.

• Distribution-Aware Quantization scheme is introduced to re-
duce weight encoding errors on PCM cells with the awareness
of modeled transmissivity distribution.

• Write-Aware Training is proposed to boost block-wise weight
similarity and reduce redundant writes during weight updates
with negligible effect on accuracy.

• Post-Training Optimization is employed to further cut down
redundant writes via column-based reordering, without changing
the model output.

• To the best of our knowledge, this is the first work that handles
the aging and energy efficiency issue of PCM-based photonic
neural engines. Our ELight achieves over 20× reduction in the
total number of re-programming operations and dynamic energy
cost during inference, enabling long-life and efficient photonic
in-memory neurocomputing.
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Fig. 2: The architecture of photonic tensor engines based on PCM.

II. PRELIMINARIES

In this section, we introduce the basics of phase change material,
the architecture of photonic tensor core, and current barriers in the
practical deployment of PCM-based ONNs.

A. Basics of Phase Change Material (PCM)

As a promising memristive device, phase change material (PCM)
draws particular attraction in photonic in-memory computing. PCM
can cause a pronounced change in the optical property and switch be-
tween low-light-transmission crystalline (c) state, representing a logi-
cal ‘0’, and high-light-transmission amorphous (a) state, representing
a logical ‘1’. The programmable non-volatile states endow PCM with
a potential to demonstrate ultra-fast in-memory multiplication [12],
[13]. By shining light through the waveguide with PCM cells on top,
the transmitted optical power can be modulated as Pout = t · Pin

with t being the transmission factor inscribed in PCM states, where
the scalar multiplication is implemented. Yet, the number of realized
distinct transmission levels in current PCM cell designs is rather
limited for high-precision data storage. In [12], an implementation
of b-bit PCM cells with 2b transmission levels is proposed for in-
memory photonic analog computing by patterning 2b−1 binary PCM
wires on one waveguide. Considering the practicality of binary PCM
devices and low programming complexity, we will focus on this
PCM cell design [12] in the following discussion. However, PCM
suffers from limited endurance with a maximum of 106∼108 total
reprogramming times [14]. Frequent writing operations will over-
utilize PCM, shorten its lifetime, and reduce reliability due to the
loss of reprogrammability.

B. Architecture of Photonic Tensor Core

Recent work [12], [13] demonstrates the implementation of pho-
tonic tensor cores for optical in-memory matrix multiplication, i.e,
Y = WX + b. Both utilize the photonic PCM arrays’ storage and
light interaction capability, with W being encoded in the PCM states.

Consider the weight block W ∈ Rk×k and input matrix X with m
columns. Fig. 2 illustrates one architecture of PCM-based PTC [12],
where matrix-matrix multiplication (MM) is achieved by duplicating
PCM array m times to carry out multiple matrix-vector multiplication
(MVM). Starting with an input laser and an on-chip frequency comb
to generate multiple wavelengths (λ0, λ1, · · · ), a WDM multiplexer is
used to distribute the light into m rows evenly. For each row, a series
of narrowband micro-ring modulators are used to imprint one column
of the input matrix X in the power of the optical signals. Then, a
PCM array with k rows and k columns can be used to encode the
weight block and achieve MVM between W and one column of X .
Concretely, in the i-th rail, the inputs are filtered by the on-resonance

micro-rings and weighted via light-matter interaction with the PCM.
At the end of the drop port, photo-detectors are used to accumulate
the intensity of the WDM optical signals, i.e., the weighted inputs,
and output the desired result Yim =

∑k
j WijXjm.

In Fig. 2, the b-bit PCM cell is equivalently realized by patterning
2b−1 binary PCM wires on the same waveguide to enable 2b

transmission levels. To store the desired value, the photonic memory
cell is programmed by selectively switching the phase of the wires
between crystalline and amorphous states. For example, for a 4-bit
photonic memory with fifteen PCM wires, ’1100’ is demonstrated by
randomly programming twelve wires to the high-light-transmission
amorphous state while setting others to the crystalline state. Note that
the electrothermal a-c and c-a transition of PCM wires is achieved
by sending electrical pulses to individual thermal heaters in parallel.

C. Barriers in Practical Deployment of PCM-based ONNs

As a promising platform for machine learning (ML), photonic in-
memory neurocomputing still encounters practical challenges. First,
the limited programming resolution of PCM-based PTCs calls for a
specialized quantization scheme. Besides, the limited scale of PTC
cannot promise the one-shot realization of large matrix multiplication.
A 64 × 64 PTC is already quite large due to area cost and light
loss [13]. Hence, massive reuse of PTCs is required during inference,
leading to frequent weight updates on PCM arrays. Consequently,
with limited endurance, PCM wires are at high risk of over-utilization,
thus shortening the lifetime of photonic tensor cores. Moreover, a
massive number of write operations requires significant dynamic
power, which might raise concerns about the energy superiority
claimed for PCM.

In this paper, to tackle the above issues, we trace and optimize two
key metrics. The total number of write operations of PCM wires (#
total writes) reflects the averaged degree of utilization of PCM wires
and the dynamic energy cost. The maximum number of wire write
operations of a single photonic cell (# max writes) can represent
the status of the most over-utilized memory cell, determining the
lifetime of PTC. Unlike previous works [15]–[18], which focus on
optimizing frequent weight updates when the training is performed
on emerging neuromorphic computing systems such as ReRAM, in
this work, we focus on the potential frequent weight reprogramming
during the inference process, which plagues photonic in-memory
neurocomputing as a curse of the limited scale of PTCs.

III. PROPOSED DISTRIBUTION-AWARE QUANTIZATION SCHEME

In this section, we give out a dedicated distribution-aware quanti-
zation scheme based on the analysis of transmission level distribution
of b-bit PCM memory cell, to reduce weight encoding errors.

A. Transmission Model of Multi-Level PCM Memory Cell

The light transmissivity of a b-bit photonic memory cell is deter-
mined by the phase states of 2b−1 PCM wires. Assuming that level
i refers to the condition that i wires are set to c state while the others
are set to a state, its extinction ratio (ER) is computed as the ratio of
the transmitted optical power in level i and level 0, i.e., 10 log10(

Pi
P0

).
As demonstrated in [12], the ER uniformly increases as a function
of i with a step ∆e. Given that the transmitted optical power can be
written as the product of the transmission factor ti and input light
power, ER can be further expressed as

10 log10(
ti · Pin

t0 · Pin
) = 10 log10(

t0 · Pin

t0 · Pin
) + i∆e. (1)

Thus, the i-th transmission level can be derived as

ti = t0 · 10
1
10

∆e×i = t0 × ci, c = 10
1
10

∆e. (2)
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Here, c ∈ (0, 1) indicates the percentage of light power transmitted
through one PCM wire. The 0-th transmission level t0 corresponds
to all wires being in a state, which is approximately 1 [12].

Hence, we can finally formulate the distribution of 2b transmission
levels of b-bit PCM memory cell as an exponential model,

ti = ci, i = 0, 1, . . . , 2b − 1. (3)

B. Augmented Base-c Quantization

An important question is how to effectively map full-precision
weights w to the exponential transmission levels of PCM photonic
memory with low quantization error. Given the exponential transmis-
sivity distribution, normal uniform quantization fails to fit it well with
severe encoding error. Hence, a dedicated quantizer q(w, b), where b
is the bit-width, is required to minimize the quantization error,

min ∥ŵ − w∥22, s.t. ŵ = q(w, b) ∈ Qb, (4)

where Qb denotes a set of quantization levels, i.e., the transmission
levels of a b-bit photonic memory cell.

However, as PCM can only demonstrate positive light transmission,
to support full-range weight, we store the positive and negative
values of weight matrix W in the positive PTC and the negative
PTC, respectively. Then, the differential photo-detection module
will generate balanced output. With the simple but effective weight
extension strategy, each scalar weight w in W is expressed as

w = wpos − wneg . (5)

Here, wpos and wneg are physical values in positive and negative
photonic memory cells, where one is selected based on the sign of
w to store the weight value and the other is set to the lowest light
transmission level δ. In this way, the differential weight encoding in
(5) augments the quantization codebook Qb as follows,

Qb = {c2
b−1 − δ,±(c2

b−2 − δ), . . . ,±(c0 − δ)}, δ = c2
b−1, (6)

where the number of implementable quantization levels in Qb is
almost doubled. This attributes our quantization with a higher model
expressivity, especially under low-bit quantization.

With the augmented quantization codebook, for w within [−1, 1],
an augmented base-c quantizer is hence proposed to optimize (4) as

wq = q(w, b) =
sign(w)

s
· (cClip(R(logc(s|w|+δ)), 0, 2b−1) − δ), (7)

where the scaling factor s = c0 − c2
b−1 is used to transform

quantization levels into [−1, 1] and R(·) is a round function. Clip(·)
is a clip function to limit the value within [0, 2b−1]. A quantization-
aware training procedure [19] is adopted with our augmented base-c
quantizer to train the PCM-based ONNs. In the forward propagation,
the weights W are quantized as

wq = q(
Tanh(w)

max(Tanh(w))
, b), b > 1. (8)

In the backward pass, we coarsen the whole b-bit quantization process
q(w, b) as an entirety and estimate its gradient gq by [20]:

gq =
∂L
∂W

=
∂L
∂Wq

∂Wq

∂W
=

∂L
∂Wq

. (9)

Considering limited on-chip storage, a uniform quantizer in [21] is
used to discretize layer input.
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IV. PROPOSED AGING-AWARE CO-OPTIMIZATION FRAMEWORK

In this section, we propose the aging-aware co-optimization frame-
work, ELight, to minimize both # total writes and # max writes. We
first illustrate the problem formulation and the adopted augmented
redundant write elimination (ARWE) strategy for wire-level writes
in PCM cells. Then we describe the proposed write-aware training
method to encourage the similarity among weight blocks. At last, we
propose a fine-grained column-based reordering method further to
cut down redundant writes as a post-training optimization strategy.

A. Problem Formulation

Due to the limited scale of a single PTC, we adopt blocking
matrix multiplications to implement convolutional layers and fully-
connected layers for practical considerations. Specifically, an im2col
algorithm [22] converts the convolutions into general matrix multi-
plication (GEMM). The weight matrix W ∈ RM×N is partitioned
into P ×Q sub-matrices, where each k × k block can be deployed
onto one PTC. Then the set B of sub-matrices is assigned to a cluster
C of photonic tensor cores. Since we have M,N ≫ k, the number
of sub-matrices is quite large. For example, assuming that the size
of PTC is 64 × 64, B contains 8 × 72 blocks to implement the
5th convolutional layer of VGG8. Moreover, considering the limited
number of on-chip PTCs , multiple sub-matrices need to be assigned
to one PTC, leading to massive reuse of PTCs during inference. Here,
without loss of generality, we adopt an assignment strategy to assign
sub-matrices to PTCs for the following discussion. For one layer with
P × Q blocks, a cluster of PTCs is dedicated for the MM, where
one PTC is assigned with a row of weight blocks. P PTCs carry out
blocking MM in parallel with shared input. We assume we write new
block data into PTC after finishing all the block MMs on the current
stored block to reduce reprogramming efforts. It should be noted that
our method can work with other assignment schemes.

As data are represented by the binary-state PCM wires within
photonic memories, inspired by redundant write elimination (RWE)
strategy [23], we propose an augmented redundant write elimination
(ARWE) strategy, where we eliminate the writes for identical values
and eliminate identical wire-level writes. Concretely, to demonstrate
desired value, we preserve the current states of PCM wires at the
largest extent by only perturbing the smallest number of wires. For a
clear illustration, Fig. 3 shows one example of writing a sequence of
weight blocks into 3-bit PTCs. One positive PTC and one negative
PTC are used together to demonstrate full-range weights. When
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TABLE I: Layer-wise statistics of writes of 5-bit VGG8 model.

Layer 2 Layer 3 Layer 4 Layer 5
# total writes 1.14×106 4.87×106 1.66×107 3.26×107

# max writes 294 534 914 1425

programming transmission level +7 into the memory cell storing
level +5, two c-state PCM wires in the positive PTC need to be
programmed to a state to achieve the smallest number of writes.
Note that the binary state of each PCM wire would be stored in
memory using 1bit such that off-chip computers can reprogram based
on ARWE strategy, without the need of detecting stored values.

Thus, considering write efforts in both positive and negative PTCs,
the number of writes (WT) between two b-bit numbers w

′
and w is

computed as follows,

WT (w
′
, w) = |l+(w

′
)− l+(w)|+ |l−(w

′
)− l−(w)|, (10)

where l+ and l− denote the transmission level in positive and negative
PTC, respectively. The absolute value of l+ and l− also indicate the
number of a-state wires out of 2b−1 wires in positive and negative
PTCs, respectively, which can be derived based on (7) as

l+(w) =

{
(2b−1)−Clip(R(logt(s|w|+ δ)), 0, 2b−1), w ≥ 0

0, w < 0
(11)

l−(w) =

{
0, w ≥ 0

Clip(R(logt(s|w|+ δ)), 0, 2b−1)−(2b−1), w < 0
. (12)

Then, we have transmission level of w as l(w) = l+(w) − l−(w),
ranging from −(2b − 1) to (2b − 1).

Accordingly, to write new block A
′

of size k × k to photonic
memories storing block A, the number of writes is computed as

WT (A
′
, A)=

k∑
i

k∑
j

(|l+(a
′
ij)−l+(aij)|+ |l−(a

′
ij)−l−(aij)|). (13)

Now we consider the write count of the weight matrix W in the
jth layer, which is partitioned into a set B with P × Q blocks of
size k × k. Each PTC t in a cluster C is assigned with nt blocks,
i.e., {Bt

1, B
t
2, . . . , B

t
nt
}. The number of writes for layer j (LWT) is

computed as

LWT j =

C∑
t

nt∑
i

WT (Bt
i , B

t
i−1), (14)

where we assume the first block is mapped onto the initialized PTC
with all PCM wires being set to c state.

Hence, to deploy a model, the total number of writes is the sum of
layer-wise write operations, i.e., #total writes =

∑L
j LWT j . To

evaluate the status of the most over-utilized memory cell, we define
a layer-wise metric, # max writes, by counting the maximum number
of write operations over a single PCM memory cell for a cluster of
PTCs. Table. I shows the statistics of the number of writes and the
maximal writes for the convolutional layers of 5-bit VGG8. Though
our augmented redundant write elimination strategy is applied, we
still observe a significant number of writes that challenge the PCM
endurance. Therefore, in the following discussion, several techniques
are proposed to minimize both # total writes and # max writes.

B. Write-Aware Training via Block Matching

To reduce the number of write operations when mapping a group
of weight blocks, a straightforward technique is to shrink the weight
distance between neighboring blocks. Take the example of reducing
write operations when writing a weight sequence into one memory
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Uncontrolled 
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(b) Controlled
distance
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Fig. 4: An example of constraining a weight sequence starting from
w1. (a) Constrain the distance between neighbors. (b) Constrain weights
around reference value (w1). (c) Sort weights in (b) in an ascending order.
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Fig. 5: Proposed two-phase ELight to enable efficient photonic in-
memory neurocomputing with lifetime enhancement.

cell. As shown in Fig. 4(a), by constraining the distance between
neighbors, neighboring weights are encouraged to be similar, thus
holding more redundant writes. However, it sets no constraint on
the distance between the largest value and the smallest value. This
requires more wires to be programmed to demonstrate a wider range.
Hence, a wise solution is to constrain weights around a reference
value such that the value range is under control, shown in Fig. 4(b).

To boost the similarity among weight blocks, we propose a write-
aware training procedure, shown as phase 1 in Fig. 5. We set the
average block as a reference for weight blocks assigned to the same
PTC and penalize their transmission level distance from the reference.
Instead of directly optimizing the level difference between blocks
using (13) in a L1 way, we use an L2 regularization term to calculate
the level difference (LD) between block B and A as,

LD(B,A)=

k∑
i

k∑
j

∥l̃+(bij)− l̃+(aij)∥2+∥l̃−(bij)− l̃−(aij)∥2. (15)

Here, l̃+ and l̃− denote the normalized l+ and l− by dividing αb =
2b − 1. Normalizing level data to [−1, 1] can help healthy gradient
propagation. The L2 regularization term imposes a heavier penalty
for large value deviation, and slight deviation is allowed to maintain
diverse weights. In this way, not only # max writes can be constrained
via rejecting large value deviation, but the model expressivity can be
mostly maintained. Thus, the block matching loss is defined as

LBM =

L∑
l

G∑
t

ng∑
i

1

βB
LD(Bt

i , B
t
avr), (16)

where we explicitly encourage the similarity of weight blocks in the
same group G. βB is the block size to normalize the level distance.

By adding the block matching loss to the loss function, we trade
off between the accuracy and block similarity by controlling λ, as,

L = LCE + λLBM , (17)
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where LCE is the original cross-entropy loss.
However, there are three issues to optimize LBM . First, it is not

differentiable due to the Round(·) operations in (11) and (12). Sec-
ond, the gradient approximation through the logarithmic operations
needs to be carefully handled. Third, transmission levels in both
positive and negative PTCs are used to compute LD, while only
levels that are physically implemented on PTCs need to be involved
in gradient evaluation. In other words, only the gradient from either
∥l̃+(w) − l̃+(δ)∥2 or ∥l̃−(w) − l̃−(δ)∥2 need to be propagated
back to compute the gradient w.r.t w depending on its sign. Hence,
by leveraging straight-through-estimator (STE) to approximate the
gradients for Round(·), we propagate the gradient of LBM back as,

∂LBM

∂W
=

1

βB
(
∂LBM

∂l̃+(W )

dl̃+(W )

dW
⊙M++

∂LBM

∂l̃−(W )

dl̃−(W )

dW
⊙M−), (18)

where M+ and M− are non-negative and negative masks of W

to extract the needed gradients from dl̃+(W )
dW

and dl̃−(W )
dW

, computed
by,

dl̃+(W )

dW

∣∣∣∣
W≥0

=
−d(logt(s|W |+ δ))

αbdW
=

−s

αb ln(t)(s|W |+ δ)
, (19)

dl̃−(W )

dW

∣∣∣∣
W<0

=
d(logt(s|W |+ δ))

αbdW
=

−s

αb ln(t)(s|W |+ δ)
. (20)

C. Post-Training Optimization via Column-based Reordering

While the technique proposed above boosts the similarity among
weight blocks, there is still room for further optimization since it does
not consider the mapping order of blocks. We still take Fig. 4(b) as
an example. The sum of neighboring differences is not explicitly
optimized as we only limit all weights around one reference value.
One straightforward method to further reduce the sum of neighboring
differences is to sort the weight sequence either in ascending or
descending order, as shown in Fig. 4(c).

Inspired by this heuristic, we propose a fine-grained column-based
reordering method to sort the weights in blocks that share the same
PCM memory cells in PTCs. The second phase in Fig. 5 illustrates
our idea: For a group of weight blocks assigned to one PTC, weights
located in the same position are first shaped into 1-D sequences, then
weight sequences are separately sorted in ascending order. We can
also sort them in descending order. The weights are finally scattered
back to different blocks in the new order. Note that the above process
is equivalent to swapping columns element-wise with no influence
on final results. Besides, with the aid of the sorting heuristic, when
mapping a group of blocks, weight values are written into photonic
memories in ascending order. By eliminating redundant writes over
wires, # max writes over single photonic memory cell can be upper-
bounded by the level range of its stored weights, i.e., 2b+1−1.

Therefore, combining write-aware training with post-training opti-
mization, # total writes and # max writes can be significantly reduced
to mitigate the aging issue and the tedious programming efforts.

V. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of proposed two-phase frame-
work ELight, we conduct experiments on MNIST [24], FashionM-
NIST [25], CIFAR-10 and CIFAR-100 [26] datasets. On the first two
tasks, a CNN configuration C32K4-C32K4-P5-F64-F10 is adopted,
where C32K4 is a 4 × 4 convolutional layer with 32 kernels, P5
means average pooling with output size 5 × 5, and F64 is a fully-
connected (FC) layer with 64 neurons. On CIFAR-10 and CIFAR-
100, VGG8 [27] and VGG13 [28] are used, while we replace the
last three FC layers with one FC layer to avoid over-fitting. We
implement all models in PyTorch on a machine with an Intel Core i7-
9700 CPU and an NVIDIA Quadro RTX 6000 GPU. The CNN and
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Fig. 6: Quantization evaluation on (a) CNN and (b) VGG models. F
means full-precision models. Q means models with quantization.
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Fig. 7: Evaluation of proposed aging-aware optimization techniques
on 5-bit VGG8. (a) Normalized # total writes and accuracy comparison
with different λ for write-aware training. (b) Comparison between # total
writes and # max writes of the 5th convolutional layer.

VGG models are trained for 100 and 200 epochs, respectively, using
the SGD optimizer with a momentum of 0.9. Regarding the photonic
tensor core size, we assume 16 × 16 and 64 × 64 for the small
CNN and VGG model, respectively. Note that for fair comparison,
the augmented redundant write elimination (ARWE) strategy is also
applied in the baseline to collect statistics.

A. Evaluation of the Distribution-Aware Quantization Scheme

In Fig. 6, we evaluate our augmented base-c quantizer under 3- to
6-bit quantization. Our quantization scheme can successfully tackle
the issue of non-linear transmission level distribution, enlarges the
solution space, and achieves high accuracy under low-bit quantiza-
tion. Under 4- to 6-bit quantization, our proposed method can achieve
negligible or small accuracy loss on all tasks. Our method can still
maintain > 85% on CIFAR-10 and > 65% accuracy on CIFAR-100
under 3-bit quantization for relatively complicated tasks.

B. Evaluation of Proposed Aging-Aware Optimization Framework

1) Evaluation of write-aware training via block matching: To
investigate the impact of write-aware training, we visualize the
normalized # total writes and accuracy of 5-bit VGG8 with various
degrees of λ in Fig. 7a. With the increase of λ, # total writes decreases
since of the existence of stronger similarity among blocks. With too
large λ, accuracy starts to decline since weights cannot be identical
even we pursue block-level similarity. Otherwise, it will be hard for
weights to capture diverse features. By trading off the accuracy and #
total writes, a sweet point (λ = 10) exists with 3.17× reduction in #
total writes and only 0.44% accuracy drop. Interestingly, sometimes
a proper λ leads to better accuracy as a regularization mechanism.

2) Evaluation of post-training optimization via column-based re-
ordering: Fig. 7b shows the comparison of # total writes of 5-
bit VGG8 between (1) Model trained with/without column-based
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TABLE II: Performance of ELight on VGG networks on CIFAR-10 and CIFAR-100 dataset. AC: accuracy change, R: column-based reordering.
The # max writes of one largest convolutional layer (the 5th convolutional layer for VGG8 and 8th convolutional layer for VGG13) is shown here.

Network Dataset Bitwidth λ Acc(%)/AC # total writes ↓ (×) Energy cost ↓ (×) # max writes
- +R - +R - +R

VGG8 CIFAR-10

3 0 86.71 1 6.52 1 9.27 128 15
8 86.02/-0.69 22.12 46.11 6.63 69.29 14 7

4 0 89.75 1 7.84 1 11.31 401 36
10 89.94/+0.19 3.83 24.45 3.92 35.48 95 19

5 0 90.56 1 10.01 1 14.35 1425 82
10 90.12/-0.44 3.17 22.28 3.20 31.17 494 74

6 0 90.83 1 12.31 1 16.89 4464 180
5 89.88/-0.95 6.82 26.35 7.15 32.48 1560 146

VGG13 CIFAR-100

4 0 70.99 1 9.66 1 13.84 542 39
10 70.44/-0.55 3.54 29.25 3.57 42.02 173 33

5 0 71.73 1 12.06 1 17.29 1771 84
3 71.95/+0.22 2.19 21.93 2.21 31.41 921 55

6 0 71.88 1 14.37 1 17.62 4926 182
3 70.97/-0.91 3.11 22.65 3.19 29.85 3577 156
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Fig. 8: The reduction of # total writes and accuracy of CNN model
trained on (a) MNIST and (b) FashionMNIST under different bit-width.

reordering (R), (2) Model trained with block matching loss (M)
with/without column-based reordering (R). We also compare the #
max writes of mapping the 5-th convolutional layer. The results
provide three insights: (1) The column-based reordering can reduce
# total writes a lot even without extra training efforts to boost
weight similarity, achieving 10.01× reduction. (2) With the write-
aware training to boost similarity among blocks, the column-based
reordering can achieve the best of reduction on # total writes by
22.28×, which justifies the effectiveness of our joint aging-aware
optimization framework. (3) Our proposed column-based reordering
upper-bounds # max writes by the number of transmission levels,
i.e., 2b+1−1, which eliminates any redundant writes and ensures that
only a small number of PCM wires need to be re-written.

3) Evaluation on the synergistic optimization framework: To fur-
ther testify the effectiveness of the proposed aging-aware optimization
framework, we evaluate different models under different bit-width
quantization. For practical use, we choose a sweet point of λ to
constrain the accuracy drop within 1%. Fig. 8 shows the reduction
of # total writes and accuracy of the CNN model on MNIST and
FashionMNIST under 3- to 6-bit quantization. On those simple
tasks, a significant reduction of # total writes is obtained with
negligible accuracy drop. Table. II shows the effectiveness of our
proposed techniques on VGG8 and VGG13 trained on CIFAR-10
and CIFAR-100, respectively. The proposed write-aware training and
post-training optimization techniques can work orthogonally to each
other, achieving the largest reduction on # total writes and # max
writes, where # total writes can be reduced by > 20× with less than
1% accuracy degradation. Hence, our joint optimization framework
can successfully mitigate the aging issue by largely reducing the
number of write operations.

TABLE III: Pulse profiles for a→c and c→a transition [12].

Pulse period(µs) Pulse voltage(V ) # Pulse
a→c 1 5 20
c→a 0.5 15 1

4) Evaluation of power saving: To testify the energy efficiency
when applying the above optimization methods, we trace the detailed
energy cost of writing weight block data onto PTCs during the
inference process. Assuming the resistance of heaters is consistent,
the ratio of write energy cost between a-c and c-a transition is 40 : 9
using the pulse profiles on external heaters in Table III. Thanks to the
reduction of # total writes, the energy cost of deploying VGG8 and
VGG13 is reduced by > 30× under different bit-widths, as shown
in Table. II, which proves our aging-aware optimization framework
effectively saves dynamic energy cost incurred by PTC reuse.

VI. CONCLUSION

In this work, we propose a synergistic solution to enable effi-
cient photonic in-memory neurocomputing with an enhanced life-
time. First, we model the non-linear transmission distribution of
PCM-based photonic memories and propose a distribution-aware
quantization scheme to reduce weight encoding errors. Based on
this, we propose a synergistic aging-aware optimization framework
ELight to trim down redundant PCM writes via block-matching-
based training and column-based reordering. Our co-optimization
method significantly reduces the number of total write operations
and the number of write operations for the most over-utilized memory
cell. Experimental results demonstrate that the proposed optimization
framework can reduce the number of write operations and energy
costs by >20×, pushing photonic in-memory neurocomputing to-
wards practical application in efficient machine learning.
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