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AI Acceleration and Challenges

 ML models and dataset keep increasing
› Low latency
› Low power
› High bandwidth

 AI compute requirement has 5× the 
doubling rate of Moore’s law

2https://openai.com/blog/ai-and-compute/



Photonic AI

[Shen+, Nature Photonics 2017]
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 Use light to continue Moore’s law
 Promising technology for next-generation AI accelerator

Ultra-high speed & Ultra-low energy
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Optical Computing Basics
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Computing Basics
MZI

𝑦𝑦 = 𝑎𝑎 ⋅ 𝑥𝑥

2×2 Unitary Matmul (~100×20 𝑢𝑢𝑚𝑚2 ) Scalar Mul.  (~10×10 𝑢𝑢𝑚𝑚2 )
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Optical Neural Network

Photonic tensor unit for 
analog GEMM [MIT’s Nat. 
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ONN Progress
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Optical Spike Neural Network
[Tait+, 2016]

Princeton

MRR Neural Network 
[Brunner+, 2016]

[Tait+, SciRep 2017]
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Optical Reservoir Computing
[Vandoorne+, NatureComm 2014]
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PIXEL, MZI Multiplier
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Computing with Photonic Phase Change Material

 Recall photonic devices: MZI, Microring, micro-disks, …
 A new device for non-volatile computing

› Phase change material (PCM)
› Modulate the light transmission to achieve multiplication
› Store the transmission as a non-volatile memory

6
[Miscuglio+, APR’20] [Feldmann+, Nature’21]

𝑦𝑦 = 𝑤𝑤 ⋅ 𝑥𝑥



Barriers Towards Practical Deployment

 Limited PCM rewrite!
› Max: 106~108 times
› Aging issue: loss of control of PCM state

 Why we care inference endurance?
› Limited number of on-chip photonic tensor core (PTC)
› Limited scale of photonic tensor core, e.g., 64 × 64
› Need frequent reuse of photonic tensor cores

b-bit PCM memory cell
[Miscuglio +, APR’20] 

2n-1 PCM wires
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Frequent reuse further escalates
Dynamic power & Aging issue

PCM has limited rewrite times
Short endurance



Our Proposed Aging-aware PCM-ONN: ELight

 A two-phase aging-aware optimization framework
› Minimize PCM write operations in inference

 Achieved
› > 𝟐𝟐𝟐𝟐 × fewer write operations
› Minimized # max writes on a single PCM cell
› > 𝟑𝟑𝟑𝟑 × less dynamic energy cost
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Aging-aware 
NN model
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Phase1: Write-aware training 
via block matching
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Phase2: Post-training optimization 
via column-based reordering
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Photonic 
tensor cores

Dynamic power ↓ 
PCM wire writes ↓  



Distribution-aware Quantization

 1 PCM wire: 𝑦𝑦 = 𝑐𝑐𝑐𝑐
 b-bit PCM cell: 𝑦𝑦 = 𝑐𝑐𝑏𝑏𝑥𝑥
 Transmission factor (t) follows power-of-c model

 Full-range weight: Positive and negative PCM cells
› 𝑏𝑏+1bit equivalent weight level
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2b-1 PCM wires

b-bit PCM memory cell

Amorphous state (0)
Crystalline state (1)

Be Aware of Distribution !
→More quantization levels in small weights

→ boost expressivity



Augmented Redundant Write Elimination (ARWE)

 Block matrix multiplication
 Assume each PTC is assigned with one row of weight sub-blocks
 ARWE: Preserve current states at the most

› Redundant write elimination scheme [Yang+, ISCAS]
› Easy to compare values as weights are known and pre-stored 
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Write-aware Training: Weight Matching

 Significant rewrite operations still exists with ARWE!
› Deployment of a 5-bit VGG8 model trained on CIFAR10

 Pull weights similar to boost write redundancy!
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Orchestrate weight similarity
during training



Write-aware Training: Block Matching
 Average a group weight blocks into one reference block
 Compute level difference between two blocks with L2 norm

› Penalize large value deviation but Allow slight value deviation
› Preserve model expressivity

 Match weight blocks with the reference block
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Write-aware Training: Optimization issue

 ℒ𝐵𝐵𝐵𝐵 is not differentiable
› Recall the function to get transmission levels

 Not all gradients need to be propagated back
› Only gradients from physically stored value are valid
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STE

Mask out invalid gradients



Post-training Optimization: Need of Reordering

 We only pull weights close to a reference
 No order information is introduced during our optimization!

› Cannot guarantee best-of-reduction

 Find an optimal order to map weights
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Post-training Optimization: One-shot Reordering

 Simply reorder the weight sequences
 Efficient reordering with negligible overhead
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Post-training Optimization: One-shot Reordering

 Take one more step before real deployment
 One-shot recording concurrently for different columns
 No affect on the computation results

› General matrix multiplication

16

Fine-grained reorder for Q columns

W0,0 W0,1 W0,Q k

Row 1

Row k

Row 0
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Re-order weights to minimize # writes 



Experimental Results: Quantization
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 Experiments settings
› Photonic PCM memory: 3 − 6-bit
› Photonic tensor core: 16 × 16 and 64 × 64
› Models: Simple CNN, VGG8 and VGG13
› Dataset: MNIST, FashionMNIST, CIFAR10 and CIFAR100

 Distribution-aware quantization
› Small accuracy loss with > 4-bit



Experimental Results: # total Write 
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 5-bit VGG8 on CIFAR10
 Write-aware training (M)

› Trade-off between accuracy and write elimination
› < 𝟏𝟏𝟏 accuracy drop with sweet parameters

 Post-training reordering (R)
› Further cut down redundant writes
› Achieve 𝟐𝟐𝟐𝟐.𝟑𝟑 × reduction on #writes with M



Experimental Results: Endurance & Energy
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 > 20 × fewer write operations 
 Minimized # max writes on a single PCM cell
 > 30 × less dynamic energy cost

ONN Lifetime ↑
Dynamic energy ↓



Conclusion and Future work
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 The first aging-aware optimization framework for Photonic in-memory 
computing

 Expressivity: Distribution-aware quantization
 Lifetime enhancement: > 20 × fewer write operations
 Energy efficiency: > 30 × less dynamic energy cost
 Push forward the real deployment of Photonic in-memory computing

 Future direction
› Preserve the accuracy of NN model with aged PCM cells
› Counter other non-ideal factors such as device-to-device variations
› Investigate the effect of temporal drift



Our Recent Work & Open-source Framework
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 Build ultra-fast (light-speed), ultra-energy efficient, and highly robust 
optical neural accelerators with photonic integrated circuits

ONN Design Stack Proposed

Scalability

Learnability

Challenges

HARDWARE

SOFTWARE

ONN 
Architecture Design

ONN 
On-Chip Training

SlimONN         [ASP-DAC’19]
FFT-ONN         [ASP-DAC’20]
FFT-ONN v2         [TCAD’20]
SqueezeLight       [DATE’21]

FLOPS             [DAC’20]
MixedTrain   [AAAI’21]
L2ight     [NeurIPS’21]

Efficiency

Efficiency

ONN Optimization Robustness ROQ           [DATE’20]
ELight      [ASP-DAC’22]

Circuit-Architecture-Algorithm Co-Design! PyTorch-ONN Library



Thanks!

Q & A?
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