
The Unlikely Hero: Nonidealities in Analog Photonic Neural
Networks as Built-in Adversarial Defenders

Haotian Lu, Ziang Yin, Partho Bhoumik, Sanmitra Banerjee, Krishnendu Chakrabarty, Jiaqi Gu
Arizona State University

jiaqigu@asu.edu

ABSTRACT
Electronic-photonic computing systems have emerged as a promising
platform for accelerating deep neural network (DNN) workloads. Ma-
jor efforts have been focused on countering hardware non-idealities
and boosting efficiency with various hardware/algorithm co-design
methods. However, the adversarial robustness of such photonic analog
mixed-signal AI hardware remains unexplored. Though the hardware
variations can be mitigated with robustness-driven optimization meth-
ods, malicious attacks on the hardware show distinct behaviors from
noises, which requires a customized protectionmethod tailored to opti-
cal hardware. In this work, we rethink the role of conventionally unde-
sired non-idealities in photonic accelerators and claim their surprising
effects on defending against weight attacks. Inspired by the protection
effects from DNN quantization and pruning, we propose a synergistic
defense framework tailored for optical AI hardware that proactively
protects sensitive weights via pre-attack unary weight encoding and
post-attack vulnerability-aware weight locking. Efficiency-reliability
trade-offs are formulated as constrained optimization problems and
efficiently solved offline without model re-training costs. Extensive
evaluation of various DNN benchmarks with a multi-core photonic
accelerator shows that our framework maintains near-ideal inference
accuracy under adversarial bit-flip attacks with merely <3% memory
overhead. Our codes are open-sourced at link.
ACM Reference Format:
Haotian Lu, Ziang Yin, Partho Bhoumik, Sanmitra Banerjee, Krishnendu
Chakrabarty, Jiaqi Gu, Arizona State University, jiaqigu@asu.edu . 2025. The
Unlikely Hero: Nonidealities in Analog Photonic Neural Networks as Built-
in Adversarial Defenders. In 30th Asia and South Pacific Design Automation
Conference (ASPDAC ’25), January 20–23, 2025, Tokyo, Japan. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3658617.3697771

1 INTRODUCTION
In recent years, analog optical neural networks (ONNs) stand out for
their ability to deliver unparalleled speed and efficiency, presenting
a promising avenue for artificial intelligence (AI) applications [4–
6, 21–25, 29]. However, deploying photonic accelerators is impeded
by various non-idealities, e.g., low precision, noises, and crosstalk, that
increase the design complexity to ensure robust deployment. Extensive
prior work has focused on suppressing the physical non-ideality and
improving the robustness via hardware/algorithm co-design [8, 16, 27,
30]. Besides the built-in variations/noises, photonic accelerators are
exposed to adversarial attacks [15, 18, 19] in real-world deployment,
raising hardware security concerns. Like digital AI accelerators, we
envision that malicious attacks, e.g., bit-flip attacks in stored NN
weights, will quickly become another potential roadblock for emerging

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than the author(s)
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPDAC ’25, January 20–23, 2025, Tokyo, Japan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0635-6/25/01. . . $15.00
https://doi.org/10.1145/3658617.3697771

optical accelerators. Only tens of bit-flips on the most significant bits
(MSB) of critical weights severely degrade the accuracy. Effective pre-
attack protection and post-attack accuracy recovery schemes that
leverage the unique properties of analog optical hardware remain
unexplored.

Prior work in neural network defense has explored various training-
based and training-free defense methods [8–11]. For example, noise-
aware training (NAT) [8] and adversarial training have been proposed
to smooth the NN loss landscape and increase attack tolerance. Among
various defense methods, a class that exploits model compression
techniques is particularly interesting in the analog NN context. Quan-
tization, a common model compression method, has been applied for
defense. Binarization-aware training (BAT) [9], as a training-based
method, has been proposed to provide pre-attack protection by re-
ducing weight sensitivity via 1-bit weights. However, training-based
methods usually suffer from huge model re-training costs and en-
counter practical concerns in data access, privacy, etc. As a pre-attack
protection conducted offline, training-based defense maximizes the av-
erage performance across arbitrary attacks, which usually lack precise
protection at the cost of task performance degradation. Training-free
methods usually occur post-attack as a complementary protection
mechanism, detecting/localizing the victim weights [13] and resuming
accuracy by error mitigation/correction. A representative training-
free defense method is pruning-based accuracy recovery [10]. It de-
tects victim weight groups via MSB checksum verification and prunes
detected weights to 0 to partially reduce the bit-flip induced error.
Since low-bit precision and sparsity naturally exist as built-in primi-
tives in optical AI hardware mainly for efficiency-accuracy trade-offs,
it inspires us to explore their novel usages in defense.

ONNs’ non-idealities have been treated as undesired hardware
restrictions compared to digital computers, while in this work, we
revisit their role as intrinsic low-cost defenders, adding reliability as
a new dimension in the hardware/software co-design space. In this
work, for the first time, we propose a synergistic defense framework
for photonic AI hardware that provides pre-attack protection via an
optics-inspired unary weight representation and post-attack accuracy
recovery via a sensitivity-aware on-chip weight locking technique.
Memory efficiency and adversarial robustness are co-optimized to
provide near-ideal accuracy protection at marginal memory overhead.

The major contributions of this paper are as follows:
• We investigate the adversarial robustness of optical analog neural

networks under malicious weight attacks and explore the built-in
protection of the photonic accelerator non-idealities.
• Wepropose a quantization-inspired truncated complementary unary

weight encoding to minimize the ONN weight sensitivity with op-
timized efficiency-robustness trade-offs.
• We propose a pruning-inspired clustering-based weight locking
technique that co-optimizes detection precision, accuracy recov-
ery, and memory efficiency.
• Our synergistic framework with integrated pre-attack unary pro-
tection and post-attack weight locking has shown near-ideal re-
sumed accuracy with a marginal 3% memory overhead.

https://github.com/ScopeX-ASU/Unlikely_Hero
https://doi.org/10.1145/3658617.3697771
https://doi.org/10.1145/3658617.3697771

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

Haotian Lu, Ziang Yin, Partho Bhoumik, Sanmitra Banerjee, Krishnendu Chakrabarty, Jiaqi Gu
Arizona State University

jiaqigu@asu.edu

...

0 0 1 0

1

0

0
-1
-2

000

110

BC
D

100

111

1

Unary

Figure 1: (Left) Example optical DACs with segmented modulators [17,
20]. (Right) Signed BCD to unary representation conversion.

0001 1001
0100
1100

Weight in Mem Optical Accel.

0101 1101
Malicious attack

(10000)U
0100

Weight in Mem

(11000)U
ONN quant.-inspired
unary representation

pre-attackattackpost-attack
Sensitivity Recovery

0100
1100

Weight in Mem

ONN pruning-inspired
weight locking

(10000)U

(11000)U

1100 0100

deployattack

Accuracy
10%

Accuracy
88%

Figure 2: Proposed built-in defense flow for photonic AI accelerators
against malicious weight attack.

2 PRELIMINARIES
2.1 Photonic AI Accelerators and Optical DAC
Various photonic AI accelerators have been demonstrated [4, 6, 14,
21, 22, 28]. As a case study, we focus on one multi-core photonic AI
accelerator architecture based on dynamic photonic tensor cores (PTC)
[28]. Each PTC takes two optically-encoded matrices and performs
speed-of-light matrix-matrix multiplication. The input signals are
quantized to reduce the digital-analog conversion (DAC) cost. The
inputs𝑋 are quantized to 8-bit fixed-point numbers, while the weights
are quantized to 𝑏-bit, e.g., ranging from 4-bit to 8-bit. A recent trend
to reduce the electrical DAC (eDAC) power bottleneck is to employ
optical DAC (oDAC) modules, which encode discretized values to light
magnitude with segmented modulators [17, 20], as shown in Fig. 1.

The controller in segmented oDAC is partitioned into 2𝑏 − 1 equal-
length segments, each contributing to 1 least-significant bit (LSB) of
the encoded value. In this setting, the binary weight value needs to be
converted to a unary representation where a ’1’ applies a voltage to
that bit without the need for high-power eDAC. Thus, the number of
leading 1’s can represent the original binary-coded digit (BCD), i.e.,

(𝑤)𝐵 = {1}𝑤 {0}2𝑏−1−𝑤 =
(
1, · · ·, 1︸ ︷︷ ︸
𝑤

, 0, · · · , 0︸ ︷︷ ︸
2𝑏−1−𝑤

)
𝑈
, (1)

where 𝑤 is a signed integer value. For example, (11110000)𝑈 =(4)𝐵 .
Compared to PTCs with high-speed eDACs, oDAC-enhanced designs
show significant power reduction. This unique hardware architec-
ture and property inspire us to explore intrinsic unary encod-
ing as an effective protection mechanism that bringsminimum
weight sensitivity without extra BCD-to-Unary conversion cost, as
unary coding is the built-in primitive.

3 PROPOSED DEFENSE FRAMEWORK
We will introduce the threat model and investigate built-in defense
mechanisms in non-ideal analog photonic accelerators. As shown in
the overview Fig. 2, two key techniques will be introduced to provide
both pre-attack weight protection and post-attack accuracy recovery
with optimized memory-robustness trade-offs.

3.1 Threat Model and Attacker Settings
As a case study, we assume awidely employed attackermodel: gradient-
based attacker BFA [18]. Important assumptions on the threat model
are given in Table 1. We follow the standard white-box attack threat
model assumptions as previous work [9, 12, 18, 19].

Table 1: Threat model assumed in this work.
Access Required Access NOT Requied

DNN model and parameters Training Configurations
A mini-batch of attack dataset Modify scaling factors in quantization & Norm.

On-chip forward/backward prop. Modify address mapping/look-up tables

0.E+0

1.E+6

2.E+6

3.E+6

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

of

 w
ei

gh
ts

Weight Sensitivity

4-bit
6-bit
8-bit

(𝑆)

VGG8-
CIFAR10

(a)

0

20

40

60

80

100

0 200 400 600 800

A
cc

ur
ac

y
(%

)

Inference Budget

8-bit 6-bit 4-bit

𝑇!"#

VGG8-CIFAR10; HD=100

(b)

Figure 3: (a) Lower bitwidth reduces weight sensitivity. (b) Low-bit
quantization helps improve bit-flip attack robustness.

Eq. (2) describes the target of an on-chip adversarial attacker under
Hamming Distance (HD) and inference budget (𝑇𝑖𝑛𝑓) constraint.

min
I𝐴

𝐴𝑐𝑐 (𝑊I𝐴 ,D
𝑡𝑒𝑠𝑡) ≈ max

I𝐴
L(𝑊I𝐴 ,D

𝑎𝑡𝑡)

s.t. ∥𝑊I𝐴 −𝑊 ∥1 ≤ 𝐻𝐷 ; # of model inferences ≤ 𝑇𝑖𝑛𝑓 ,
(2)

where I𝐴 is the selected bits to attack,𝑊I𝐴 is the attacked weights,
and D𝑎𝑡𝑡 is the attack dataset, usually a small batch of 𝐵𝑆 examples.
The minimization of post-attack test accuracy is often estimated by
maximizing the loss function on a small attack dataset.
Gradient-based Attacker (BFA). The gradient-based attacker has ac-
cess to the gradient information of a mini-batch of data via on-chip
backpropagation and attacks the most sensitive bits. Specifically, we
adopt the attacker algorithm BFA [18] that progressively searches for
the most sensitive bits indicated by the largest absolute gradient if the
flip direction aligns with the gradient. The gradients of all weights
will be re-evaluated every time it flips one bit. Each bit-flip requires
forward and backward propagation, equivalently consuming three
inference budgets. If the attacker consumes all inference budget but
still has an extra hamming distance budget left unused, it will directly
select the most sensitive but unattacked weights to flip their MSB to
make sure it always uses up the hamming distance budget. We conduct
all the experiments under the 𝐻𝐷 = 100 condition.

3.2 Efficient Built-in Pre-Attack Defense via
Unary Weight Representation

For efficiency and control complexity consideration, the weights of
photonic analog AI hardware are often quantized to low-bitwidth
fixed-point numbers [8, 28], usually represented as binary-coded dec-
imal (BCD) format with 2’s complement encoding. The weights are
fetched from electrical memory, converted to voltage signals via DACs,
and encoded in the optical domain for computing. To investigate the
role of quantized weight encoding in the adversarial robustness of
analog hardware, we first raise several critical questions: ➊ How does
quantization impact the adversarial robustness against bit-flip
attack? ➋ How can we leverage the natural unary representa-
tion inspired by optical DAC as an effective defense? ➌ What is
the robustness-memory trade-off of unary representation and
how to avoid the exponential memory cost?

3.2.1 Protection Effects of Quantization. To answer the question ➊,
we investigate how sensitivity changes with various bitwidth in quan-
tization. In Fig. 3(a), we observe that low-bit quantization can reduce
the overall weight sensitivity defined later in Eq. (5). Hence, in Fig. 3(b),
we observe a clear protection effect from low-bit quantization against

The Unlikely Hero: Nonidealities in Analog Photonic Neural Networks as Built-in Adversarial Defenders ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

bit-flip attack, which lays the foundation for our further study in
memory-efficient unary representation.

3.2.2 Unary Representation as Built-in Protection. BCD-format is com-
pact in storage but sensitive to bit-flip attack since the MSB flip can
cause significant deviation by half of the weight range, which casts a
serious reliability threat to the hardware. An intuitive solution is to
leverage the built-in unary representation to minimize the bit-flip sen-
sitivity as all bits in unary-coded weight are LSB. With a predefined
protection rate 𝛼 , i.e., the percentage of weights protected by unary
representation, the protected weights can be searched by maximizing
the post-attack accuracy, which reflects the protection effectiveness,

I∗𝑈 = argmax
I𝑈

𝐴𝑐𝑐 (𝑊I𝑈 ,D
𝑣𝑎𝑙), (3)

where I∗
𝑈

is the selected indices for unary protection to maximize the
validation accuracy after attack,𝑊I𝑈 represents the attacked weights.
We denote the number of weights protected as 𝑁𝑈 = ⌈𝛼 |𝑊 |⌉ = |I∗

𝑈
|.

For the original unary representation, the memory overhead is
exponential, which limits protection efficiency, as shown in Eq. (4).

𝑚𝑈 =
(
(2𝑏 − 1) |I𝑈 | +

𝐿∑︁
𝑙=1
⌈log2 𝑁

𝑙
𝑈 ⌉ × |I𝑈 ,𝑙 |

)
/(𝑏 |𝑊 |), (4)

Given the memory overhead budget, we can roughly derive the
maximumnumber ofweightswe can protect. Then, the next phase is to
determine the weights to protect. The overall pre-attack protection
algorithm with unary representation is detailed in Alg. 1. To maximize
the protection effectiveness, we prefer to protect vulnerable weights
that show the largest bit-flip sensitivity 𝑆 .
Bit-flip-Aware Weight Sensitivity Evaluation. A widely used weight
sensitivity is the magnitude of the first-order gradient |∇𝑊 L| or
second-order gradient |∇2

𝑊
L| in the literature. Those metrics are

designed for small random perturbations in a neighbor region where
the gradient and curvature information can capture the sensitivity.
However, the bit-flip attack is not a random perturbation that has
a determined direction, i.e., from 0/1 to 1/0; meanwhile, the large
deviation from the MSB flip breaks the assumption of small local
perturbation. Therefore, we employ a bit-flip-aware sensitivity score
based on Taylor expansion of the loss on the validation dataset,

𝑆 = L − L0 ≈ ∇𝑊 L · Δ𝑊𝑀𝑆𝐵 +
1
2
· ∇2
𝑊 L · Δ𝑊

2
𝑀𝑆𝐵, (5)

where the Hessian matrix is approximated by its diagonal entries
∇2
𝑊
L, and Δ𝑊𝑀𝑆𝐵 is the perturbation caused by MSB-1 flip. A larger

sensitivity 𝑆 represents a higher vulnerability to bit-flip. This score
is aware of the alignment of the bit-flip direction with the gradients.
Only bit-flips leading to larger S will be considered for protection.
Sensitivity-Guided Memory Overhead Assignment. Once we obtain
the sensitivity scores for all weights, we need to further determine how
to leverage the scores as guidance to distribute the memory overhead
budget to all neural network layers.We proposeTop-Sensitive-Layer
Assignment that ranks layers based on their overall sensitivity and
allocates all memory budgets to the most sensitive layers. As shown
in Fig. 5(a), layer sensitivity is estimated by the averaged 50%-quantile
and 75%-quantile of sensitivity of all weights, i.e., 𝑆𝑙 = (𝑄50% (𝑆) +
𝑄75% (𝑆))/2. The sorted layer indices from most sensitive to least
sensitive are (𝑙1, 𝑙2, · · · , 𝑙𝐿). Formally, the layer-wise overhead budgets

are (|𝑊 𝑙1 |∑𝐿
𝑖=1 |𝑊 𝑙𝑖 | ,

|𝑊 𝑙2 |∑𝐿
𝑖=1 |𝑊 𝑙𝑖 | , · · · ,𝑚 −

∑𝐿′
𝑗=1

|𝑊 𝑙 𝑗 |∑𝐿
𝑖=1 |𝑊 𝑙𝑖 | , 0, · · · , 0), where

only the top-𝐿′ sensitive layers can have weight protection.
Attack-injected Search for Weight Selection. Based on the sensitivity-
weighted guidance, we can select a certain number of vulnerable
weights to protect for each layer. However, solely relying on weight

0 2 4

1-bit 3-bit 7-bit 15-bit

0 2 4

15-bit

0 2 4

1-bit 3-bit 7-bit 1-bit3-bit7-bit

Unary

Truncated Unary

Truncated
Complementary

Unary

Binary
(2's complements)

0 2 4 -8 -1

4-bit

Example
(2)B

(11000000
00000000)U

(110)TU

(110)TCU

(-3)B

(11111111
11111100)U

(11111111
11111100)TU

(100)TCU

Count 1's from left Count 0's from right

trim leading
1's

trim trailing
0's

7

-8 -17

-8 -17

-8 -17 -4

Figure 4: Different coding formats. Our truncated complementary
unary representation shows superior memory efficiency.

sensitivity ranking to select weights to protect does not directly opti-
mize toward the true objective, i.e., maximization of post-attack accu-
racy𝐴𝑐𝑐 (𝑊). Since the selection procedure is pre-deployment (offline),
we can afford to search by sampling weights with sensitivity-weighted
probability and select the group that brings the best protection based
on bit-flip attack emulation and validation accuracy.

Algorithm 1 Pre-attack unary weight protection algorithm

Input: Loss function L(𝑊) , protection rate 𝛼 , hamming distance for at-
tacker 𝐻𝐷 , # of attacks𝑇𝑎 , max search steps𝑇 , and validation set D𝑣𝑎𝑙 .
Calculate per-weight sensitivity {𝑆𝑙 }𝐿

𝑙=1 and layer sensitivity {𝑆𝑙 }𝐿
𝑙=1

{𝑁 𝑙
𝑈
}𝐿′
𝑙=1 ← mem_assignment(𝛼, {𝑆𝑙 }𝐿

𝑙=1)
for 𝑙 ← 1 · · · 𝐿′ do

Best accuracy 𝐴𝑐𝑐∗ ← 0
for 𝑡 ← 1 · · ·𝑇 do

Sample 𝑁 𝑙
𝑈

indices with probability 𝑃𝑙 = softmax(𝑆𝑙) as I𝑙
𝑈 ,𝑡

Protect weights with TCU:𝑊 𝑙

I𝑙
𝑈 ,𝑡

← BCD-to-TCU(𝑊 𝑙 , I𝑙
𝑈 ,𝑡
)

for 𝑗 ← 1 · · ·𝑇𝑎 do
𝑊 𝑙

I𝑙
𝑈 ,𝑡

← Attack(𝑊 𝑙

I𝑙
𝑈 ,𝑡

, 𝐻𝐷) ; 𝐴𝑐𝑐 𝑗 ← 𝐴𝑐𝑐 (𝑊 𝑙

𝐼 𝑙
𝑈 ,𝑡

,D𝑣𝑎𝑙)

Get worst post-attack accuracy: 𝐴𝑐𝑐𝑡 ← min{𝐴𝑐𝑐 𝑗 |∀ 𝑗 ∈ [𝑇𝑎] }
if 𝐴𝑐𝑐𝑡 > 𝐴𝑐𝑐∗ then

Record most protective weights: 𝐴𝑐𝑐∗ ← 𝐴𝑐𝑐𝑡 ; I𝑙∗𝑈 ← I
𝑙
𝑈 ,𝑡

Output: I∗
𝑈
← {I𝑙∗

𝑈
|𝑙 ∈ [𝐿′] }

3.2.3 Memory-Efficient Truncated Complementary Unary Representa-
tion. To answer question ➌, we propose a memory-efficient truncated
complementary unary (TCU) representation. An important observa-
tion is that in the original unary representation, the large number of
trailing zeros for small values are only for bitwidth alignment
purposes without any expressiveness. Hence, an intuitive com-
pression method is to truncate the trailing zeros to reduce bitwidth
from (2𝑏 − 1) to 𝑏. For example, if 𝑏 = 3, we can compress numbers
smaller than 4 by using only 4-bit in truncated unary-format instead
of 23 − 1 = 7-bit, e.g., (7𝑏′1100000)𝑈

𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒−−−−−−−−→ (4𝑏′1100)𝑈 , without
changing its actual encoded value of (2)𝐵 .
How to select optimal truncation bitwidth 𝑏? – If 𝑏 is too large, not
many zeros can be truncated. On the other hand, if 𝑏 is overly small,
only a fewweights with small values can be expressed by the truncated
bitwidth. Both cases give unsatisfactory memory saving.

We first illustrate a truncated version of unary format (TU) by
clustering weights into exponentially-spaced bins and assigning a
truncation bitwidth to cover the largest value in each bin, as shown in
Fig. 4. For small positive values, such a method can significantly trim
the redundant trailing zeros for memory reduction. But it is not very
efficient for the largest bin. Moreover, since most sensitive weights

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

Haotian Lu, Ziang Yin, Partho Bhoumik, Sanmitra Banerjee, Krishnendu Chakrabarty, Jiaqi Gu
Arizona State University

jiaqigu@asu.edu

(a)

0%

20%

40%

60%

80%

100%

0.10% 0.20% 0.50% 1.00% 2.00%

P
er

ce
nt

ag
e

Percentage of Weights Protected

65~128
33~64
17~32
9~16
5~8
3~4
0~2

Abs weight:
|𝑤|

(𝛼)

(b)

Figure 5: (a) 6 layers in 8-bit VGG-8 shows distinct layer sensitivity
statistics. (b) Distribution of absolute values of weights protected by
Unary Protection for 8-bit VGG-8 on CIFAR10. Vulnerable weights that
deserve to be protected have small magnitudes.

have small absolute values [10], a large proportion of negative weights,
unfortunately, fall into the largest bin.

Aware of the Gaussian-like weight distribution in real neural
networks and the important property of unary representation, i.e.,
counting 0’s is equivalent to counting 1’s, we propose a comple-
mentary unary format (TCU) that stores trailing 0’s and trims leading
1’s for negative values. For instance, the required bitwidth for -3 can be
reduced from 15-bit in TU-format to 3-bit in TCU-format, as illustrated
in Fig. 4. Similar to logarithmic quantization, the exponentially-sized
bins in TCU-format reduce the bin count while minimizing memory
overhead by holding a large number of small-value yet sensitive
weights in the lowest-bitwidth bins, shown in Fig. 5(b).

The memory overhead ratio𝑚𝑇𝐶𝑈 of TCU-format and indexing
overhead is formulated in Eq.(6).

𝑚𝑇𝐶𝑈 =

𝐿′∑︁
𝑙

(∑︁
𝑖∈𝐼 𝑙

𝑈

2⌈log2 min(2𝑏−|𝑊𝑖 |,|𝑊𝑖 |) ⌉ + ⌈log2 𝑁𝑙 ⌉ × |I𝑙𝑈 |
)
/(𝑏

𝐿∑︁
𝑙

|𝑊 𝑙 |) .

(6)
3.3 Post-attack Accuracy Recovery via

Sensitivity-aware Weight Locking
Pre-attack unary protection is unaware of the actual attacked bits
as it is performed offline before deployment. This lack of precise
targets makes the coverage of pre-attack protection insufficient
if only a small percentage (𝛼) of weights can be converted to TCU
format. It is necessary to employ post-attack detection and recovery
mechanisms to compensate for this inevitable protection miss.

Pruning is widely used in analog ONNs to improve energy effi-
ciency [1–3, 7, 26]. We ask two critical questions: ➊ how to leverage
the natural hardware sparsity for defense? and ➋ how to trade
off pruning-induced accuracy loss and protection effects?

In previous work [10], pruning is utilized to force detected under-
attack weight groups to zero to partially cancel out the bit-flip errors.
This method is intuitive due to two facts. (1) First, the MSB flip creates
a deviation of half of the weight range, which always changes the sign
of the weight, e.g., (−3)𝐵 → (5)𝐵 for a 4-bit weight. Hence, forcing it
to 0 always reduces the error | (−3) − 0| < | (−3) − 5|, at least on the
weight itself. (2) Second, weight distribution shown in Fig. 5(b) shows
that many sensitive weights under attack have small magnitudes [10],
which further justifies that pruning is a promising built-in mechanism
for accuracy recovery, which answers question ➊.

However, simple weight pruning fails to resume accuracy in prac-
tice because many of the pruned weights are either still far away
from 0 or not real victim weights due to inevitable false alarms
in group-wise detection. In other words, pruning fake victims to 0
turns out to be a self-attack.

To answer question ➋, we propose sensitivity-aware weight lock-
ing, which generalizes prior pruning-based method and significantly
boosts the protection effectiveness with optimal clustering and locking.

Group-wise
detection ! !

Group-wise
prune/lock

group
size

Pre-assign to centroids

! !

Lock detected groups to centroids
00 0 00 0

Prior pruning-based protection Proposed weight locking protection

0 0 0 0
locking value
assignment

Pre-assign to 0

Figure 6: Comparison between pruning-based protection and our
proposed weight-locking method.

-th layer

Initialize: =1 cluster(s), =512 #weights/cluster

Locking-aware K-Means
clustering to get centroids

 and cluster ids

Acc drop < ?
Yes

Return
,

?

No

No? Yes
Yes

Cannot lock

No

Prepare

Pre-attack (offline) Attack Apply locking

Apply

Deploy

Pre-attack locking preparation

Prefer large
detection

group for
lower cost

Prefer fewer
locking

clusters for
lower cost

Accuracy-
constrained

search

* is -bit
Attack

88%

70% 70%

87%
Acc Acc

Detect

Figure 7: The layer-wise offline search procedure to find optimal
detection group size and locking solutions given accuracy constraints.

Post-attack accuracy recovery generally follows two steps: detec-
tion (localization) and resume. We assume the same detection tech-
nique based on group-wise MSB checksum verification [10]. A mis-
match in checksum will mark the entire group of size 𝐺 as the victim
weight group. All weights in victim groups will be resumed in the sec-
ond step. Shown in Fig. 6, unlike the prior pruning method that forces
victim weights to 0, we propose sensitivity-aware weight locking that
intelligently finds 𝐾 centroids before deployment and locks detected
victim weights to their centroids to maximize recovery effectiveness.
Key trade-offs here include detection group size 𝐺 , which impacts
detection accuracy and memory, and cluster number𝐾 , which impacts
both the centroid storage cost and resumed accuracy.

For the 𝑙-th layer, we formulate it as an accuracy-constrained mem-
ory overhead minimization problem as follows in Eq.(7),

min
{𝑊𝑘 }𝐾𝑘=1,I𝐿 ,𝐺,𝐾

𝑚𝐿 (𝐺,𝐾) =
{ |𝑊 | (log2𝐾+2)

𝐺 ·𝑏 |𝑊 | , 𝐺 > 1
|𝑊 | (log2𝐾+1)

𝑏 |𝑊 | , 𝐺 = 1

s.t. 𝐴𝑐𝑐0 − 𝐴𝑐𝑐 (𝑊I𝐿 ,{𝑊𝑘 }𝐾𝑘=1
) < 𝜂

, (7)

where𝑊𝑘 is the𝑏-bit centroid for the𝑘-th cluster,I𝐿 ∈ {1, 2, · · · , 𝐾} |𝑊 |
is the assigned cluster IDs for weights, and 𝜂 is the threshold of the
gap between ideal and resumed accuracy. The above optimization is
performed independently for each layer. For the memory overhead
𝑚𝐿 : 1) (log2 𝐾)/𝐺 denotes the number of bits required to store the
cluster ID for each weight. 2) 1 or 2/𝐺 denotes the memory required
to store the golden signature used in checksum-based detection [10].

The algorithm to solve this optimization problem for layer-𝑙 is
illustrated in Fig. 7. To prioritize the lowest-memory solution, we
initialize it to the largest group size𝐺=512 and minimum cluster count
𝐾=1, and gradually search feasible solutions by halving 𝐺 and double
increasing 𝐾 . To find the cluster centroids that minimize locking-
induced accuracy loss, we augment conventional K-Means clustering

The Unlikely Hero: Nonidealities in Analog Photonic Neural Networks as Built-in Adversarial Defenders ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

Table 2: Impact of batch-size 𝐵𝑆 (size of D𝑎𝑡𝑡) on post-attack accuracy
(8-bit VGG8-CIFAR10) with different inference budgets𝑇𝑖𝑛𝑓 . Accuracy
with the same color corresponds to the same hardware cost (𝐵𝑆 ×𝑇𝑖𝑛𝑓).
Bold texts show the lowest accuracy with the same color.

Inference Budget 𝑇𝑖𝑛𝑓Batch Size 20 40 80 160 320 640 1280
8 61.28 60.47 38.15 38.81 39.39 32.84 35.75
16 53.62 52.45 35.64 40.30 20.49 14.68 16.72
32 62.91 50.76 46.01 28.12 17.50 15.28 13.06
64 64.43 49.26 36.24 22.27 16.84 13.39 28.04
128 65.35 50.16 42.74 26.87 17.49 12.42 11.08

Table 3: Defense efficiency of unary protection with two different
methods across different protection rate 𝛼 and attacker inference bud-
get𝑇𝑖𝑛𝑓 . Accuracy is for 8-bit VGG8-CIFAR10. 𝐵𝑆=16 for BFA attacker.

Method Memory
Overhead𝑚𝑈

Protected Weight
Percentage 𝛼 Worst Acc. Mean Acc.

Even
Assignment

3.34% 0.10% 19.65 39.21
8.51% 0.25% 53.48 69.69
33.90% 1.00% 79.59 83.12
309.08% 9.00% 87.16 87.31

Top-Sensitive-Layer
Assignment

3.34% 0.10% 75.43 80.06
6.70% 0.20% 78.86 83.27
16.96% 0.50% 80.02 84.03
67.90% 2.00% 87.14 87.27

to a locking-aware variant. We first perform single-cluster (𝐾=1) K-
Means within each group. The distance𝑑𝑖𝑛 fromweight𝑊𝑖 to centroid
𝑊𝑛 of 𝑛-th detection group is redefined as in Eq.(8)

𝑑𝑖𝑛 = ∇𝑊𝑖 L · (𝑊𝑖 −𝑊𝑛) +
1
2
· ∇2
𝑊𝑖
L · (𝑊𝑖 −𝑊𝑛)2 . (8)

We then obtain 𝑁 = ⌈|𝑊 |/𝐺⌉ group centroids aware of locking errors
𝐴𝑐𝑐 (𝑊) − 𝐴𝑐𝑐 (𝑊). Since 𝑁 ≫ 𝐾 , we further perform a standard
K-Means clustering to the obtained 𝑁 centroids and get {𝑊𝑘 }𝐾𝑘=1.

3.4 Synergistic Protection with Integrated TCU
Encoding and Weight Locking

To provide double protection against bit-flip attacks, we leverage
both pre-attack unary protection and post-attack weight locking
with co-optimized memory overhead. Before deployment, given a
protection rate 𝛼 , we first perform pre-attack unary protection in
Alg. 1 to find the weight indices I𝑈 and protect them by converting
them to TCU-format, effectively reducing the sensitivity of vulnerable
weights from MSB to LSB. Meanwhile, we prepare the locking solu-
tions ({𝑊𝑘 }𝐾𝑘=1,I𝐿) for each layer using the procedure in Fig. 7 given a
target accuracy drop threshold 𝜂. After the attack happens, checksum-
based detection is applied to pinpoint potential victim weight groups
under adversarial attack. Then, all weights in the detected groups
will be locked to their pre-assigned centroid for post-attack accuracy
recovery. A carefully selected (𝛼, 𝜂) setting gives the best post-attack
accuracy and lowest memory overhead. Since the memory overhead
tends to become very large in two extreme cases, i.e., pure unary
protection or pure locking, the optimal solution in the middle range
can be simply found by greedy search. We gradually reduce the unary
protection rate 𝛼 , e.g., from 2% to 0.25%, and for each 𝛼 , we evaluate
the overall memory cost and resumed accuracy for all 𝜂 candidates,
e.g., 𝜂 ∈ {1%, 1.5%, 2%}. The search is stopped when the memory
overhead increases, and the most efficient solution can be selected.

4 EXPERIMENTAL RESULTS
4.1 Experiment Setup
Dataset and NN Models.We evaluate our method on VGG-8 CIFAR-
10 and ResNet-18 CIFAR-100 for image classification. We choose 4-bit,
6-bit, and 8-bit for weight quantization. Input activations are 8-bit.
Training Settings.We pre-train all models for 200 epochs with an
Adam optimizer with a 2E-3 learning rate, a cosine decay scheduler,

Table 4: Memory overhead required by TCU-format and unary repre-
sentation on 8-bit VGG8-CIFAR10.
Protected Weight Percent 𝛼 0.05% 0.10% 0.20% 1.00% 2.00% 4.00%

Unary Encoding:𝑚𝑈 1.66% 3.34% 6.70% 33.90% 67.90% 136.39%
Proposed TCU:𝑚𝑇𝐶𝑈 0.17% 0.51% 1.07% 3.39% 6.03% 12.70%
Reduction (𝑚𝑈 /𝑚𝑇𝐶𝑈) 9.86× ↓ 6.51× ↓ 6.24× ↓ 9.99× ↓ 11.26× ↓ 10.74× ↓

Table 5: Results of post-attack accuracy recovery by proposed weight
locking. 8-bit VGG-8 on CIFAR-10 is evaluated.𝐺 and𝐾 show solutions
for all 6 convolutional and linear layers.

𝜂 (%) Layer-wise Weight
Locking Solutions

Mem. OV
𝑚𝐿

Inference Budget𝑇𝑖𝑛𝑓 Mean
Acc.20 80 160 400 900

- w/o locking 0.00% 53.62 35.64 40.30 18.59 13.52 32.33

1 G=[1, 1, 4, 16, 128, 2] 1.29% 83.49 80.77 78.36 84.60 86.59 82.76K=[8, 2, 1, 1, 2, 16]

1.5 G=[1, 1, 8, 16, 128, 2] 1.15% 79.82 80.96 76.67 72.01 86.59 79.21K=[4, 1, 1, 1, 2, 1]

2 G=[1, 2, 16, 32, 128, 2] 0.97% 78.84 80.50 76.16 71.78 86.65 78.79K=[4, 4, 1, 1, 1, 1]

1E-4 weight decay, and data augmentation (random crop and flip).
BatchNorm layers are all frozen after pretraining.
Benchmarks and Metrics. We adopt the strongest attacker setting
shown in Section 4.2.1 with 𝐻𝐷=100. To cover different attack bud-
get scenarios, we sweep over budgets 𝑇𝑖𝑛𝑓 such that the number of
bits flipped ranges from 2 to 100. We show averaged/worst/best in-
ference accuracy on 5 attack datasets across all budgets. Gaussian
weight noises (std.=0.005) are injected into all on-chip computations
for attackers. We compare ours to two types of defense baselines.

(1) Training-based Defense – Binarization-aware Training (BAT) [9]
quantized all weights to 1-bit to reduce bit-flip sensitivity. Also, we
compare ours to noise-aware training (NAT) [8], which is usually used
to boost ONN robustness.

(2) Other Training-free Defense – We use a previous pruning-based
protection method [10] as another training-free baseline representing
a special case in our weight locking, i.e., centroids are fixed to 0.

4.2 Ablation Study
4.2.1 Batch Size 𝐵𝑆 and Inference Budget 𝑇𝑖𝑛𝑓 . To make sure we
evaluate our method against the strongest attacker model, we first
evaluate themost efficient batch size settings across different inference
budgets in Table 2. We can conclude that 16 images are enough for the
attacker to get informative sensitivity scores via stochastic gradient
calculation to perform an effective bit-flip attack, which leads to the
lowest post-attack accuracy given the same hardware cost (𝐵𝑆 ×𝑇𝑖𝑛𝑓).
An overly small 𝐵𝑆 gives inaccurate gradients, while too many images
consume the inference budget rapidly, helping the attacker marginally.
4.2.2 Memory Overhead Assignment in Pre-Attack Unary Protection.
We compare Top-Sensitive-Layer Assignment to an Even Assignment
baseline, i.e.,𝑚𝑙

𝑈
= 𝑚𝑈 /𝐿, in Table 3. With unary-coded pre-attack

protection, the even assignmentmethod consumes significantly higher
memory overhead than our sensitivity-aware method when reaching
the same level of post-attack accuracy.
4.2.3 Truncated Complementary Unary Protection. Table 4 compares
the memory storage required by Unary Protection and Truncated
Complementary Unary Protection. TCU can significantly reduce the
memory overhead by 6-11× than the original unary encoding.
4.2.4 Post-Attack Weight Locking. For weight locking, the accuracy
drop threshold 𝜂 is the key parameter to balance resumed accuracy
and memory overhead. In Table 5, we show the performance of the
proposed Weight Locking on 8-bit VGG-8 and CIFAR-10. Within the
layer-wise acceptable accuracy drop 𝜂, Weight Locking can provide
significant post-attack accuracy recovery with only less than 2% of
extra memory overhead. However, to achieve lower memory overhead,
accuracy recovery will be largely compromised from 87% to 70%.
Weight Locking actually employs the accuracy-storage trade-off.

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

Haotian Lu, Ziang Yin, Partho Bhoumik, Sanmitra Banerjee, Krishnendu Chakrabarty, Jiaqi Gu
Arizona State University

jiaqigu@asu.edu

Table 6: Main comparison results among our method with prior defense methods against BFA attackers.
Memory OverheadModel +

dataset Category Quant.
Bit

Defense
Method

Prior-attack
Accuracy Best Acc. Worst Acc. Mean Acc. Training/Searching

Runtime Pre (𝑚𝑇𝐶𝑈) Post (𝑚𝐿) Total
4-bit - 87.73 82.24 59.87 75.85
6-bit - 88.00 75.66 33.58 61.74w/o Def
8-bit - 88.00 53.62 13.52 32.89

-

1-bit BAT [10] 87.09 86.12 74.62 80.39 0.33 hrs
4-bit NAT [8] 87.96 83.32 66.71 77.06 2.8 hrs
6-bit NAT [8] 87.19 77.68 33.39 64.78 2.8 hrsTraining-based

8-bit NAT [8] 85.91 67.74 26.14 55.88 2.8 hrs

-

Pruning [10] 87.73 80.88 57.23 70.68 - 3.13% (G=16)4-bit Ours 87.73 86.96 83.08 84.74 0.03hrs + 0.33 hrs 0.84% 0.000% 0.84%
Pruning [10] 88.00 79.91 40.74 66.14 - 4.17% (G=8)6-bit Ours 88.00 86.90 86.25 86.48 0.03hrs + 0.50 hrs 0.93% 1.11% 2.04%
Pruning [10] 88.00 70.11 18.68 48.59 - 3.13% (G=8)

VGG-8
+

CIFAR10

Training-free

8-bit Ours 88.00 87.21 86.08 86.73 0.03hrs + 0.75 hrs 1.07% 1.29% 2.36%
4-bit - 61.28 56.49 49.06 54.76
6-bit - 60.61 41.45 3.69 22.89w/o Def
8-bit - 60.22 38.01 2.19 9.93

-

1-bit BAT [9] 60.03 59.69 54.01 56.84 0.4 hrs
4-bit NAT [8] 61.58 58.27 46.72 51.81 8.9 hrs
6-bit NAT [8] 60.61 39.24 7.20 22.89 8.9 hrsTraining-based

8-bit NAT [8] 60.22 38.98 2.19 12.99 8.9 hrs

-

Pruning [10] 61.28 57.24 42.02 47.68 - 3.13% (G=16)4-bit Ours 61.28 60.20 53.78 57.40 0.04 hrs + 1.17 hrs 1.12% 1.05% 2.17%
Pruning [10] 60.61 54.96 10.99 44.76 - 4.17% (G=8)6-bit Ours 60.61 59.46 58.21 58.88 0.04 hrs + 1.62 hrs 1.06% 1.20% 2.26%
Pruning [10] 60.22 53.62 16.33 39.72 - 3.13% (G=8)

ResNet-18
+

CIFAR100

Training-free

8-bit Ours 60.22 58.82 57.21 58.10 0.04 hrs + 3.01 hrs 1.26% 1.77% 3.03%

𝜂=1
𝜂=1.5

𝜂=2
G=2

G=4
G=8

G=16

0

20

40

60

80

0% 2% 4% 6% 8% 10%12%14%

M
ea

n
A

cc
. (

%
)

Memory Overhead

Weight Lockin g
Weight Prunin g

(𝑚!)

(a)

(0%, 1)

(0.1%, 1)

(0.1%, 1.5)

(0.1%, 2)

(0.2%, 1)

(0.2%, 1.5)

(0.2%, 2)

(1.0%, 0)

80
81
82
83
84
85
86
87
88

1.0% 1.5% 2.0% 2.5% 3.0% 3.5%

M
ea

n
A

cc
 (%

)

Memory Overhead

(Alpha, Eta)(𝛼, 𝜂)

(𝑚!"# + 𝑚$)

(b)

Figure 8: (a) Weight locking outperforms pruning [10] with higher
resumed accuracy and lower memory overhead. (b) Average resumed
accuracy and memory overhead with various protection rates 𝛼 in TCU
and accuracy drop thresholds 𝜂 in locking with 8-bit VGG8-CIFAR10.

We also compare our methodwithWeight Pruning proposed in [10].
Fig. 8(a) shows the effectiveness and memory overhead of protection
by Weight Pruning under different detection group sizes𝐺 . Weight
Locking can achieve higher accuracy recovery with more than 10×
reduction in memory consumption.

4.2.5 Optimal Combination of TCU and Locking. Fig. 8(b) presents the
searching process with different combinations of (𝛼, 𝜂). Pure unary
protection will consume high memory overhead to achieve effective
protection, while pure locking cannot offer comparable accuracy re-
covery. (𝛼, 𝜂) = (0.2%, 1) will give the optimal solution considering
both the accuracy recovery and memory overhead.

4.3 Main Results
In Table 6, we compare our TCU+Locking scheme with NAT [8]
(std.=0.005 weight noise injection), BAT [9], and pruning [10]. Our
method can resume accuracy with only a 2% drop after BFA attacks
at a marginal 3% memory overhead, significantly outperforming all
prior arts. Our method is training-free, which also saves significant
runtime compared to training-based methods.

4.4 Discussion: Can Noises Become Defender?
Besides low-bit quantization and sparsity, on-chip hardware noises
are the main source of non-idealities. While noises often degrade the
inference accuracy, they also hinder the attack process by adding
uncertainty to loss functions or gradients. To reduce the uncertainty,

Table 7: BFA attack performance with different samples 𝑁𝑆 on 8-bit
VGG8-CIFAR10. 𝐵𝑆=16.

Sample Times 𝑁𝑆
Inference Budget 𝑇𝑖𝑛𝑓 Mean Acc60 120 240 400 480

1 44.94 34.83 20.88 16.14 13.61 26.08
2 56.24 47.32 29.79 25.19 20.14 35.74
3 60.47 50.86 39.58 35.46 25.84 42.44

Table 8: Performance of adversarial attacker with different on-chip
Gaussian weight noise level (std.) on 8-bit VGG8-CIFAR10.
noise std. \𝑇𝑖𝑛𝑓 0 40 180 400 600 800 900

0.005 87.58 52.45 35.18 18.59 17.02 15.67 13.52
0.01 86.82 59.68 34.64 18.42 16.15 31.88 21.77
0.02 83.81 54.87 32.12 21.97 17.21 34.19 14.48
0.03 74.69 41.06 25.82 20.74 17.29 20.45 18.10

attackers might need to average over multiple (𝑁𝑆) samples, which
equivalently reduces the attack efficiency. However, we find that sam-
pling the noisy gradients (noise std.=0.005) once without averaging
gives the best attack performance.

We increase the noise intensity in Table 8 to create higher uncer-
tainty for the BFA attacker. Unfortunately, adding larger Gaussian
noises to the weights during on-chip computations does not provide
clear protection effects but leads to severe accuracy drops. It is worth
investigating potential protective noise injection and the trade-offs
between noise-induced error and protection effects in the future.

5 CONCLUSION
In this work, for the first time, we investigate the security issue of ana-
log optical neural networks and present a novel nonideality-enabled
built-in defender against adversarial bit-flip attacks. We introduce
quantization-inspired pre-attack protection based on truncated com-
plementary unary weight representation to minimize the weight sen-
sitivity with optimized memory overhead. A complementary pruning-
inspired weight-locking method is introduced to resume accuracy
with precise error correction. Our method outperforms prior defense
approaches with near-ideal accuracy recovery under bit-flip attacks
with marginal (<3%) memory overhead. Our work makes significant
strides toward reliable ONN against adversarial weight attacks and
unlocking future applications in security-thirst scenarios.

The Unlikely Hero: Nonidealities in Analog Photonic Neural Networks as Built-in Adversarial Defenders ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

REFERENCES
[1] Sanmitra Banerjee, Mahdi Nikdast, Sudeep Pasricha, and Krishnendu Chakrabarty.

2022. CHAMP: Coherent hardware-aware magnitude pruning of integrated photonic
neural networks. In Optical Fiber Communication Conference (OFC).

[2] Sanmitra Banerjee, Mahdi Nikdast, Sudeep Pasricha, and Krishnendu Chakrabarty.
2022. Pruning coherent integrated photonic neural networks using the lottery ticket
hypothesis. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI).

[3] Sanmitra Banerjee, Mahdi Nikdast, Sudeep Pasricha, and Krishnendu Chakrabarty.
2023. Pruning Coherent Integrated Photonic Neural Networks. IEEE Journal of
Selected Topics in Quantum Electronics 29 (2023), 1–13.

[4] Q. Cheng, J. Kwon, M. Glick, M. Bahadori, L. P. Carloni, and K. Bergman. 2020.
Silicon Photonics Codesign for Deep Learning. Proc. IEEE (2020).

[5] Johannes Feldmann, Nathan Youngblood, Maxim Karpov, Helge Gehring, Xuan Li,
Maik Stappers, Manuel Le Gallo, Xin Fu, Anton Lukashchuk, Arslan Raja, Junqiu
Liu, David Wright, Abu Sebastian, Tobias Kippenberg, Wolfram Pernice, and Harish
Bhaskaran. 2021. Parallel convolutional processing using an integrated photonic
tensor core. Nature (2021).

[6] Chenghao Feng, Jiaqi Gu, Hanqing Zhu, Zhoufeng Ying, Zheng Zhao, et al. 2022.
A Compact Butterfly-Style Silicon Photonic–Electronic Neural Chip for Hardware-
Efficient Deep Learning. ACS Photonics 9, 12 (2022), 3906–3916.

[7] Jiaqi Gu, Zheng Zhao, Chenghao Feng, et al. 2020. Towards Hardware-Efficient
Optical Neural Networks: Beyond FFT Architecture via Joint Learnability. IEEE
TCAD (2020).

[8] Jiaqi Gu, Zheng Zhao, Chenghao Feng, Hanqing Zhu, Ray T. Chen, and David Z. Pan.
2020. ROQ: A Noise-Aware Quantization Scheme Towards Robust Optical Neural
Networks with Low-bit Controls. In Proc. DATE.

[9] Zhezhi He, Adnan Siraj Rakin, Jingtao Li, Chaitali Chakrabarti, and Deliang Fan.
2020. Defending and Harnessing the Bit-Flip Based Adversarial Weight Attack.
In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
14083–14091.

[10] Jingtao Li, Adnan Siraj Rakin, Zhezhi He, Deliang Fan, and Chaitali Chakrabarti. 2021.
RADAR: Run-time Adversarial Weight Attack Detection and Accuracy Recovery. In
2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). 790–795.

[11] Jingtao Li, Adnan Siraj Rakin, Yan Xiong, Liangliang Chang, Zhezhi He, Deliang Fan,
and Chaitali Chakrabarti. 2020. Defending Bit-Flip Attack through DNN Weight
Reconstruction. In Proc. DAC.

[12] Liang Liu, Yanan Guo, Yueqiang Cheng, Youtao Zhang, and Jun Yang. 2023. Gen-
erating Robust DNN With Resistance to Bit-Flip Based Adversarial Weight Attack.
IEEE Trans. Comput. 72, 2 (2023), 401–413.

[13] Qi Liu, Wujie Wen, and Yanzhi Wang. 2020. Concurrent Weight Encoding-based
Detection for Bit-Flip Attack on Neural Network Accelerators. In Proc. ICCAD.

[14] W. Liu, W. Liu, Y. Ye, Q. Lou, Y. Xie, and L. Jiang. 2019. HolyLight: A Nanophotonic
Accelerator for Deep Learning in Data Centers. In Proc. DATE.

[15] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. 2017. Fault injection attack on
deep neural network. In Proc. ICCAD.

[16] Asif Mirza, Febin Sunny, et al. 2022. Silicon Photonic Microring Resonators: A
Comprehensive Design-Space Exploration and Optimization Under Fabrication-
Process Variations. IEEE TCAD 41, 10 (2022), 3359–3372.

[17] Sajjad Moazeni, Sen Lin, MarkWade, Luca Alloatti, Rajeev J. Ram, Milos Popovic, and
Vladimir Stojanovic. 2017. A 40-Gb/s PAM-4 Transmitter Based on a Ring-Resonator
Optical DAC in 45-nm SOI CMOS. IEEE J. Solid-State Circuits 52, 12 (Dec. 2017),
3503–3516.

[18] A. Rakin, Z. He, and D. Fan. 2019. Bit-Flip Attack: Crushing Neural Network With
Progressive Bit Search. In 2019 IEEE/CVF International Conference on Computer Vision
(ICCV). 1211–1220.

[19] Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao, Chaitali Chakrabarti, and Deliang
Fan. 2022. T-BFA: Targeted Bit-Flip Adversarial Weight Attack. IEEE Transactions
on Pattern Analysis and Machine Intelligence 44, 11 (2022), 7928–7939.

[20] Alireza Samani, David Patel, Mathieu Chagnon, Eslam El-Fiky, Rui Li, Maxime
Jacques, Nicolás Abadía, Venkat Veerasubramanian, and David V. Plant. 2017. Ex-
perimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-
electrode silicon photonic Mach Zehnder modulator. Opt. Express 25, 12 (June 2017),
13252.

[21] Bhavin J. Shastri, Alexander N. Tait, et al. 2021. Photonics for Artificial Intelligence
and Neuromorphic Computing. Nature Photonics (2021).

[22] Yichen Shen, Nicholas C. Harris, Scott Skirlo, et al. 2017. Deep Learning with
Coherent Nanophotonic Circuits. Nature Photonics (2017).

[23] Alexander N. Tait, Thomas Ferreira de Lima, Ellen Zhou, et al. 2017. Neuromorphic
photonic networks using silicon photonic weight banks. Sci. Rep. (2017).

[24] Xingyuan Xu, Mengxi Tan, Bill Corcoran, Jiayang Wu, Andreas Boes, Thach G.
Nguyen, Sai T. Chu, Brent E. Little, Damien G. Hicks, Roberto Morandotti, Arnan
Mitchell, and David J. Moss. 2021. 11 TOPS photonic convolutional accelerator for
optical neural networks. Nature (2021).

[25] Zhihao Xu, Tiankuang Zhou, Muzhou Ma, ChenChen Deng, Qionghai Dai, and Lu
Fang. 2024. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial
general intelligence. Science 384, 6692 (2024), 202–209.

[26] Ziang Yin, Nicholas Gangi, Meng Zhang, Jeff Zhang, Rena Huang, and Jiaqi Gu.
2024. SCATTER: Algorithm-Circuit Co-Sparse Photonic Accelerator with Thermal-
Tolerant, Power-Efficient In-situ Light Redistribution. In Proc. ICCAD.

[27] Zheng Zhao, Jiaqi Gu, Zhoufeng Ying, et al. 2019. Design Technology for Scalable
and Robust Photonic Integrated Circuits. In Proc. ICCAD.

[28] Hanqing Zhu, Jiaqi Gu, Hanrui Wang, et al. 2024. Lightening-Transformer: A
Dynamically-Operated Optically-Interconnected Photonic Transformer Accelerator.
In Proc. HPCA. 686–703.

[29] H.H. Zhu, J. Zou, H. Zhang, et al. 2022. Space-efficient optical computing with an
integrated chip diffractive neural network. Nature Commun. (2022).

[30] Ying Zhu, Grace Li Zhang, Bing Li, et al. 2020. Countering Variations and Thermal
Effects for Accurate Optical Neural Networks. In Proc. ICCAD.

