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ABSTRACT
Photonic tensor cores (PTCs) are essential building blocks for optical
artificial intelligence (AI) accelerators based on programmable pho-
tonic integrated circuits. Most PTC designs today are manually con-
structed, with low design efficiency and unsatisfying solution quality.
This makes it challenging to meet various hardware specifications and
keep up with rapidly evolving AI applications. Prior work has explored
gradient-based methods to learn a good PTC structure differentiably.
However, it suffers from slow training speed and optimization difficulty
when handling multiple non-differentiable objectives and constraints.
Therefore, in this work, we propose a more flexible and efficient zero-
shot multi-objective evolutionary topology search framework ADEPT-Z
that explores Pareto-optimal PTC designs with advanced devices in
a larger search space. Multiple objectives can be co-optimized while
honoring complicated hardware constraints. With only <3 hours of
search, we can obtain tens of diverse Pareto-optimal solutions, 100×
faster than the prior gradient-based method, outperforming prior man-
ual designs with 2× higher accuracy weighted area-energy efficiency.
The code of ADEPT-Z is available at link.
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1 INTRODUCTION
Photonic tensor cores (PTC) offer significant advantages in artificial in-
telligence (AI) acceleration in terms of speed and energy efficiency over
traditional electronic processors. Various integrated PTC designs have
been demonstrated for speed-of-light matrix multiplication [1–12]. Co-
herent PTCs leverage phases of the light to encode more information
and perform linear transformation via interference. The transfer matrix
of coherent PTCs is usually a complex-valued matrix with stronger
expressivity than real-valued tensor cores [11, 12]. Based on the expres-
sivity, coherent PTCs can be separated into universal PTCs that can
realize arbitrary matrices and subspace PTCs whose implementable
matrices are a subset of them. Clements/Reck-style Mach-Zehnder
interferometer (MZI) meshes based on singular value decomposition
belong to universal PTCs. Extensive subspace coherent PTCs have
been proposed to increase efficiency and scalability. Butterfly-style
PTC [4, 13, 14] has been proposed to reduce the high cost of unitary
matrices by using logarithmic-depth butterfly mesh. Interlacing MZI
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mesh based on repeated phase shifters and multi-port couplers [10]
has been proposed for more robust programmable PTCs.

However, almost all PTCs available today are manually designed
based on matrix decomposition, intuition, or inspiration from signal
processing, which only covers several points in the enormous space.
Universal MZI arrays have maximum expressivity but suffer from a
large area and insertion loss. Butterfly mesh is very compact, but its
expressivity is limited when scales to larger arrays. Besides those two
extreme points, most space has been left unexplored. Designing Pareto-
optimal PTCs that honor multiple constraints remains a significant
challenge due to the complex trade-offs among performance metrics,
especially when it scales to large circuit sizes. Even an experienced
researcher often requires huge design efforts to create a photonic cir-
cuit design that can simultaneously deliver high matrix expressivity,
high machine learning (ML) task accuracy, low latency, small area, and
low power. It is promising to develop an automated circuit topology
search methodology to explore the design space of PTCs to push the
Pareto-front in the accuracy/area/efficiency space with fast design
closure. Prior work has formulated the PTC topology search as a dif-
ferentiable optimization problem and used a gradient-based method
for one-shot topology search. Parameters and architecture variables
are co-optimized on a certain model and dataset. This method suc-
cessfully finds PTC designs with higher accuracy and smaller device
footprint than MZI arrays and butterfly mesh. However, it shows sev-
eral key limitations. (1) The gradient-based circuit search method
is limited to differentiable objectives. It takes considerable effort
to mathematically relax the combinatorial optimization problem to
its continuous equivalence. However, not all objectives, such as the
longest path, bounding box, or sequence distance, can be converted to a
differentiable version. Finding an accurate approximation and effective
proxy also takes non-trivial efforts. Moreover, the differentiable formu-
lation restricts the search space such that it cannot consider multi-port
couplers or arbitrary coupler placements. (2) It is difficult to handle
multiple constraints. Since many constraints are non-differentiable
in nature, they often need to be gradually enforced by using penalty
or Lagrangian methods. Too many penalty terms make it difficult to
balance their gradients and, thus, hard to converge to a high-quality
solution. (3)High search cost to explore the Pareto front. One-shot
gradient-based PTC search uses a weighted sum to optimize a single
objective, which converges to one solution after hours of training. The
search process needs to be relaunched every time the constraints or
objective (i.e., weighting coefficients for metrics) change.

Motivated by the above limitations, in this work, we propose an effi-
cient and flexible zero-shot PTC topology search framework ADEPT-Z
based on gradient-freemulti-objective evolutionary search, co-exploring
the Pareto frontier with multiple objectives and hardware constraints
in a larger design space. Our main contributions are as follows:
• We introduce a zero-shot topology search framework to explore
Pareto-optimal photonic tensor core designs automatically.
• Larger Design Space: We expand the design space to include
advanced multi-port devices with arbitrary placements for more
efficient information interaction.
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• Multi-Objective Optimization: We create a compact gene encod-
ing with customized mutation/crossover operators for evolutionary
search with balanced exploration and exploitation, which gener-
ates diverse Pareto-optimal solutions in accuracy-density-efficiency
space, honoring area, power, and latency constraints.
• Efficient Zero-Shot Performance Evaluation: To avoid the high

training cost, we introduce a comprehensive accuracy proxy based
on efficient circuit trainability and expressivity evaluation. Rigor-
ous layout area and circuit power calculations are used to evaluate
efficiency and compute density.
• Extensive evaluation on various benchmarks and circuit scales

demonstrate that our searched PTC topologies show superior accu-
racy, compute density, energy efficiency, and generalizability with
>100× lower search runtime compared to manual designs and prior
auto-design method.

2 BACKGROUND
2.1 Automated PTC Design
Previously, a differentiable PTC design method ADEPT [15] has been
proposed to formulate the combinatorial circuit topology search as a
continuous probabilistic optimization problem and solve it with gra-
dient descent. Discrete device placement and routing problems are
re-formulated as binarization-aware training and permutation matrix
learning. Expressivity of the PTC is optimized by training the con-
structed optical neural network (ONN) on a small dataset. During
training, hardware constraints and device footprint constraints are
gradually enforced by the penalty method and augmented Lagrangian
method. This method takes 6-10 hours time to converge to a single
feasible solution with carefully balanced objectives and penalty terms,
which lacks flexibility for multiple objectives and complicated con-
straints and search efficiency to explore the Pareto frontier.

3 ZERO-SHOT AUTOMATIC PHOTONIC TENSOR
CORE DESIGN FRAMEWORK

3.1 Search Space Specification
For a complex-valued weight matrix𝑊 ∈ C𝑀×𝑁 , we can partition
it into 𝑃 × 𝑄 sub-matrices with the size of 𝐾 × 𝐾 . Each submatrix
block can be mapped to a size-𝐾 PTC. Our goal is to search the Pareto-
optimal topology for this 𝐾 × 𝐾 PTC. As shown in Fig. 1, we adopt
𝑈 Σ𝑉 as the design skeleton. Both of the unitaries 𝑈 𝛼𝑝𝑞 and 𝑉𝛼𝑝𝑞 follow
a pre-defined block-wise structure, each block containing a column of
phase shifters R, couplers T , and waveguide crossings P. The diagonal
matrix Σ is simply a column of modulators. Their transfer matrices
can be formulated as

𝑈𝛼𝑝𝑞 =

𝐵𝑈∏
𝑏=1
P𝑏T𝑏R

(
Φ𝑏𝑝𝑞

)
, 𝑉𝛼𝑝𝑞 =

𝐵𝑈 +𝐵𝑉∏
𝑏=𝐵𝑈 +1

P𝑏T𝑏R
(
Φ𝑏𝑝𝑞

)
(1)

For simplicity, we only discuss𝑈 and use 𝐵 instead of 𝐵𝑈 .
The first stage of each block is one column of 𝐾 phase shifters

(PS), which is equivalent to a diagonal matrix R
(
Φ𝑏𝑝𝑞

)
to the input

vectors R
(
Φ𝑏𝑝𝑞

)
= diag

(
𝑒− 𝑗𝜙1 , · · · , 𝑒− 𝑗𝜙𝐾

)
. The second stage con-

sists of multi-port couplers (DC) for all-to-all information mixing via
diffraction and interference. Specifically, the multi-port couplers are
Multi-Mode Interference (MMI) couplers. The transmission from 𝑘-th
input port to 𝑙-th output port of an 𝑁𝑐 -port general MMI [16] is

𝑀𝑙𝑘 = (−1)𝑙+𝑘 𝑗 exp
(
𝑗
𝜋

4

)
×
√︂

1
𝑁𝑐

exp
(
− 𝑗

(
(𝑙 − 1/2) − (−1)𝑙+𝑘 (𝑘 − 1/2)

)2
𝜋/(4𝑁𝑐 )

)
,

(2)

Figure 1: Illustration of PTC search space of ADEPT-Z.

where 𝑁𝑐 is the number of the input/output ports. An array of DCs
(or waveguides) is expressed as a block diagonal matrix T𝑏 . Our design
space for each DC layer is equivalent to partitioning an integer 𝐾 into
the sum of 𝑛 ∈ [1, 𝐾] nonnegative integers times their permutations,
which is considerably larger than only densely placing 2-port DCs to
fill all 𝐾 wires in prior work [15]. Since there is no analytical form
for the combinations, we denote the exponential solution space for
each DC layer as 𝐹𝐾 . The last stage in the block is the waveguide
crossings (CR) that perform arbitrary bijective waveguide routing. The
waveguide crossing layer can be expressed as a permutation matrix P𝑏 .
The P𝑏 , which has 𝐾 ! possible combinations in one block, contributes
most of the design space.
Design Space. In summary, a photonic mesh contains 𝐵 blocks, each
comprising a PS layer, a DC layer, and a CR layer. The topology 𝛼
includes the number of blocks 𝐵𝑈 and 𝐵𝑉 , the waveguide connections
P, and the placements of couplers as specified by T . The total design
space is 𝑂

(
(𝐹𝐾 · 𝐾 !)𝐵max

)
.

3.2 Problem Formulation
Our goal is to explore the Pareto-front of coherent PTC designs to
deliver high expressivity, area efficiency, and energy efficiency while
honoring the area, power consumption, and latency constraints. We
formulate the constrained multi-objective problem as follows,

max
𝛼 ∈A
{S1

(
𝑔𝑊 ∗𝛼

)
,𝐶𝐷 (𝛼 ) , 𝐸𝐸 (𝛼 ) }, 𝛼 =

(
𝐵𝑈 , 𝐵𝑉 , P, T

)
s.t.𝑊 ∗ = argmin

𝑊

L
(
𝑊 𝛼 ;Dtrn ) ,𝐶min 𝑖 ≤ C𝑖 (𝛼 ) ≤ 𝐶max 𝑖 , 𝑖 ∈ N

+

𝑊 𝛼 ∈ C𝑀×𝑁 =

{
𝑊 𝛼
𝑝𝑞

}𝑝=𝑃,𝑞=𝑄
𝑝=1,𝑞=1

=

{
𝑈𝛼𝑝𝑞Σ𝑝𝑞𝑉

𝛼
𝑝𝑞

}𝑝=𝑃,𝑞=𝑄
𝑝=1,𝑞=1

,

𝐵𝑈 , 𝐵𝑉 ∈ [𝐵min /2, 𝐵max /2] ,𝑊𝑝𝑞 ∈ C𝐾×𝐾 ,
P =

(
· · · , P𝑏 , · · · , P𝐵𝑈 +𝐵𝑉

)
, T =

(
· · · , T𝑏 , · · · , T𝐵𝑈 +𝐵𝑉

)
,

(3)

where𝑊 ∗ ∈ C𝑀×𝑁 is the trained ONN weight matrix for accuracy
evaluation. There are multiple hardware constraints𝐶𝑖 that need to be
honored. The main optimization variables are architecture parameters
𝛼 that impact the structure of 𝑈 and 𝑉 circuits, which contains cir-
cuit block count 𝐵𝑈 /𝑉 , coupler layer transmission T , and waveguide
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Figure 2: Spearman coefficients for different accuracy proxies.

crossings P. Diagonal Σ belongs to ONN weights, not circuit topology.
The PTC topology 𝛼 is shared for all matrices in the neural network
layers, not layer-specific.

3.3 Multi-Objective Evolutionary PTC Search

Algorithm 1 Evolutionary PTC topology search algorithm
Input: Maximum iteration times 𝐼𝑚𝑎𝑥 , Second phase iteration time 𝐼𝑝ℎ𝑎𝑠𝑒2,

Population size 𝑃0, Initial mutation rate 𝑝𝑚𝑢 , constant crossover rate 𝑝𝑐𝑜 ,
Baseline topologies 𝛼0

Output: Optimal solution set 𝑆
1: 𝑆 ← 𝛼0 + randomInit(𝑃0 )
2: for 𝑖 ← 1 · · · 𝐼𝑚𝑎𝑥 do
3: OffSpring← mutateAndCrossover(𝑆, 𝑝𝑚𝑢 , 𝑝𝑐𝑜 )
4: OffSpring← checkConstraints(OffSpring)
5: 𝑆 ← 𝑆 + OffSpring
6: 𝑆.assessSortSelect( )
7: if 𝑖 ≤ 𝐼𝑚𝑎𝑥 − 𝐼𝑝ℎ𝑎𝑠𝑒2 then
8: 𝑝𝑚𝑢 ← cosineDecayScheduler.step( )

To explore the highly discrete and multi-objective PTC topology
design space, a suitable search engine needs to meet the following
requirements: ➊ it can handle multiple (non-)differentiable objectives;
➋ it should ensure sufficient exploration with balanced exploitation to
cover the huge design space and generate multiple Pareto-optimal can-
didate solutions;➌ it must ensure feasibility undermultiple constraints;
➍ it should be efficient, especially avoiding high model training cost to
find the trained weights𝑊 ∗. To satisfy all the above requirements, we
propose a zero-shot gradient-free framework based on a customized
multi-objective evolutionary search algorithm to efficiently solve the
constrained combinatorial optimization problem with multiple
objectives as shown in Alg. 1.
3.3.1 Objective Definition. Multiple metrics must be considered in
a balanced fashion when assessing a PTC topology.We employ three
scores simultaneously to evaluate the performance, including task accu-
racy, compute density, and energy efficiency.
Accuracy Score. The accuracy impact of a PTC needs to be measured
by mapping it onto an ONN and training and evaluating the model
on a dataset. To avoid training costs and expedite the search process,
we design a comprehensive Accuracy Score as a training-free proxy,
which evaluates both the trainability and expressivity of PTC topology.

We select 5 candidate scores to construct the proxy: (1) Param-
Score, (2) Sparsity-Score, (3) Zico-Score [17], (4) Zen-Score [18], and
(5) Gradient Norm [19]. The first two scores are motivated by the
insight that a matrix’s expressivity is typically related to the number
of independent parameters and its sparsity. For Param-Score, phases Φ
on programmable PS are the only trained parameters in unitaries. We
count the total PS (directly connected phase shifters can be merged as
one) normalized to the matrix size 𝐾2 as the Param-Score. Even with

Figure 3: Gene-to-circuit mapping.

many parameters, if there is insufficient cross-channel interaction via
couplers, the matrix can be a block diagonal matrix with high sparsity.
Hence, as a complementary score, we use the sparsity of𝑊 (higher is
denser) to evaluate its expressivity.

The last three are commonly used accuracy proxies from Zero-shot
neural architecture search (NAS), which all focus on the gradient/Lipschitz-
related property to evaluate its trainability. Figure 2 shows the Spear-
man correlation between each score and the test accuracy obtained
from extensive training to measure the ability of the scores to accu-
rately predict the relative accuracy ranking of different PTC topologies.
Zico-Score, Param-Score, and Sparsity-Score have the highest Spearman
coefficients, indicating more accurate predictions. We define an Accu-
racy Score S as a linear weighted combination of these three scores.
Optimal combination coefficients are found by solving the following
optimization problem to maximize the Spearman correlation,

max
𝑐𝑖

Spearman(S (𝛼 ), 𝐴𝑐𝑐 (𝑊 ∗𝛼 ) ), S(𝛼 ) =
∑︁

𝑐𝑖 ∗ 𝑆𝑖 ,

𝑆𝑖 ∈ {Zico-Score, Param-Score, Sparsity-Score}
(4)

in which𝐴𝑐𝑐 (𝑊 ∗𝛼 ) is the actual test accuracy of a trained ONN model.
The final Accuracy Score S(𝛼) is given:
S(𝛼) = 0.015 · 𝑆Zico (𝛼) + 0.561 · 𝑆Param (𝛼) + 0.175 · 𝑆Sparsity (𝛼) (5)

Compute Density (CD). Compute density (CD) is a commonly used
performance metric in AI accelerators, which measures the computing
speed with a unit chip area, typically in the unit of TOPS/mm2. Higher
CD means better area efficiency. For a given topology 𝛼 , the compute
density 𝐶𝐷 (𝛼) is as follows:

CD(𝛼) = 2𝐾2/(𝐴(𝛼) × 𝜏 (𝛼)) (6)

A(𝛼) represents the estimated area of 𝛼 and 𝜏(𝛼) represents the esti-
mated latency of the PTC. Later, we will give a detailed estimate of the
PTC area and latency.
Energy Efficiency (EE). Energy efficiency (EE), typically in the unit
of TOPS/Watt, is a vital objective for efficient AI hardware. The formula
to calculate energy efficiency 𝐸𝐸 (𝛼) is as follows:

EE(𝛼) = 2𝐾2/(𝑃 (𝛼) × 𝜏 (𝛼)), (7)

where 𝑃 (𝛼) represents the estimated power explained later.
For each potential solution, we evaluate these three objectives inde-

pendently. The solutions are then ranked and selected based on their
combined performance across Accuracy Score, Compute Density, and
Energy Efficiency. Instead of a weighted sum of those three objec-
tives with heuristic preference, we simultaneously maximize three
scores to obtain multiple Pareto-optimal points, from which designers
can further select suitable designs by only searching once.

3.3.2 Gene Encoding. To facilitate evolutionary search, we create a
compact gene representation to encode the topology of a PTC in Fig. 3.
The gene starts with a number 𝐵 to indicate the first 𝐵 blocks are
active, followed by 𝐵𝑚𝑎𝑥 block encodings, each carrying multi-port
DC placement information and waveguide permutation indices.
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Table 1: Mutation operators for different components.

Type Mutation Ops Description

DC

R2A1 Remove 2 and add 1 DC. E.g., [2,4,2]→ [1,1,1,1,1,1,2]→ [1,4,1,2]
A2R1 Add 2 and remove 1 DC. E.g., [1,1,2,1,1,1,1]→ [1,1,2,2,2]→ [1,1,2,1,1,2]
Move Move one DC to another position. E.g., [1,2,2,2,1]→ [1,2,2,1,2]
RS Resample a DC array

CR AddCR Add a random number of CR. E.g., Add 2 CRs: [0,1,2,3]→ [0,3,1,2]
ReduceCR Reduce a random number of CR. E.g., Reduce 1 CR: [0,2,1,3]→ [0,1,2,3]

Block AddBlock Copy a random number of blocks from the front of gene, add to the end
ReduceBlock Remove a random number of blocks from the end of gene.

Block Encoding. The first integer in a gene is the number of effective
blocks in 𝛼 . The first 𝐵/2 blocks construct𝑈 , while the rest are for 𝑉 .
DC Array Encoding. For the DC array, we use a sequence of non-
negative integers {(𝑁 1

𝑐 , · · · , 𝑁𝑛𝑐 ) |
∑𝑛
𝑖=1 𝑁

𝑖
𝑐 = 𝐾, 𝑁𝑐 ∈ N+}, where each

integer corresponds to a specific type of multi-port DC (𝑁𝑐 > 1) or a
waveguide (𝑁𝑐 = 1). For instance, a 3-port DC is denoted as 3. This
approach simplifies the representation of the DC array, making it easy
to parse and manipulate during the evolutionary process.
CR Array Encoding. The permutation indices, i.e., positions of ’1’ in
the permutation matrix P, are compact representations or waveguide
routing solutions. All feasible solutions can be efficiently accessed by
re-ordering the indices.
3.3.3 Population Initialization. The population size is 𝑃0, and we ran-
domly sample the number of active blocks 𝐵 and DC placements for
each population. Randomly permuted indices for CR layers have too
many crossings. Thus, we heuristically limit the maximum crossings
for each CR layer not to exceed the maximum crossings in butterfly
mesh, i.e.,𝐾 (𝐾/2−1)/4. Initialized populations will honor all hardware
constraints. Manual designs have also been added as initial solutions.
3.3.4 Mutation & Crossover. We customize global/local mutation and
crossover operators to ensure better global coverage of the large design
space while facilitating better convergence with local search.
Mutation Operator. We designed three types of mutation operators
based on the type of devices they apply to, summarized in Table 1.
For DC Mutation, we design 4 operators: (A2R1, R2A1, Move) for
local adjustment, and RS to escape the local optima. For CRMutation,
we design 2 operators: AddCR and ReduceCR. Applying Δ𝑁𝑐 steps of
bubble sort (descending) to the CR-indices is equivalent to reducing
the same amount of crossings. Ascending sort has the opposite effect
of increasing crossings. The maximum crossings are still limited by the
value in butterfly meshes, as explained during population initialization.
ForBlockMutation, we have 2 operators: AddBlock and ReduceBlock,
which mainly adjust the circuit depth. For DC and CR arrays, before
applying mutation, we first perform a legality check to ensure that
the operator can be successfully applied to the gene segment. Then,
with a mutation probability 𝑝𝑚𝑢 , we randomly select one legal operator
from the operator set and apply it to the gene.
Crossover Operator. We customize crossover operators for solution
interpolation, shown in Fig. 4. For DC Crossover, we identify all
potential cutting points to divide parent genes into border-aligned
segments, which avoids cutting through multi-port couplers. Sliced
segments are swapped with a probability of 0.5. For CR Crossover,
to ensure legal indices while preserving the relative order in parent
genes, we select even-sized disjoint indices from two parents, shown
in Fig. 4b. Then, we insert the selected indices from the other parent
into the empty slots of one parent and generate two offspring. For
Block Crossover, we randomly swap two active(effective) blocks at
the same position with a probability of 0.5 to avoid generating illegal
genes. All the detailed crossover methods are illustrated in Fig.4.

1
2

1
2

2
1
1
2

1
2
1

2

2

1

2

1

Crossover for DC array

1
2

1
2

2
1

1
2

1

2

2

1

2

1

1
2

randomly swap
aligned segments

DC-ports
parent 1

DC-ports
parent 2

DC-ports
offspring 1

DC-ports
offspring 2

(a)

4
2
8
5
1
6
7
3

3
1
5
8
4
7
2
6

Crossover for CR array

CR-indices
parent 1

CR-indices
parent 2

(1) select disjoint
sets from parents

2

5

6
7

3

1

8

4

2

5

6
7

3
1

8
4

2

5

6
7

3
1

8
4 (2) merge by

inserting with
order maintained

3
1

8
4

2

5
6
7

CR-indices
offspring 1

CR-indices
offspring 2

(b)

Figure 4: Crossover for (a) DC and (b) CR arrays.

Figure 5: Layout for area/latency estimation. A compact crossing
array layout that occupies the leftmost slots is pre-defined.

3.3.5 Cost Estimation. Here, we explain a detailed estimation of hard-
ware cost, including area, power, and latency.
Area Estimation. For a 𝐾 × 𝐾 PTC, we estimate the area cost of all
its electrical and optical components as follows:
𝐴(𝛼 )=𝐴𝑈 (𝛼 ) +𝐴𝑉 (𝛼 ) +𝐴Σ+𝐾 (𝐴TIA+𝐴PD+𝐴MZM+𝐴DAC+𝐴ADC ), (8)

where 𝐴TIA, 𝐴PD, 𝐴MZM, 𝐴ADC and 𝐴DAC are area cost for trans-
impedance amplifier (TIA), photodetector (PD), high-speed Mach-
Zehnder modulator (MZM), analog-to-digital (ADC), and digital-to-
analog converter (DAC). The area for the photonic part is:

𝐴𝑈 /𝑉 (𝛼 ) = 𝐿𝑃𝑆 (𝑊𝑃𝑆 + (𝐾 − 1)Δ𝑊 ) + 𝐿𝐷𝐶 (𝐾 − 1)Δ𝑊
+
(
𝑁𝑐𝐿𝐶𝑅 + (𝑁𝑐 − 1)Δ𝐿𝐶𝑅

) (
𝑁𝑟𝑊𝐶𝑅 + (𝑁𝑟 − 1)Δ𝑊𝐶𝑅

)
+
(
3(𝐾 − 1)Δ𝑊 Δ𝐿 +𝑊𝑃𝑆Δ𝐿

)
,

𝐴Σ = ( (2𝐾 − 1)Δ𝑊 +𝑊𝑃𝑆 ) · (𝐿𝑃𝑆 + 2Δ𝐿)
+ ( (𝐾 − 1)Δ𝑊 + 𝐿𝑌 ) (2𝐿𝑌 + Δ𝑊 ),

(9)

where 𝐿 and𝑊 represent device length and width for phase shifter (PS),
coupler (DC), crossing (CR), and y-branch (Y). Δ𝐿 and Δ𝑊 are spacings.
𝑁𝑐 and 𝑁𝑟 represent the number of columns and rows occupied by
our predefined compact triangular crossing array layout, which fills
the leftmost column first and expands to the right. Figure 5 shows the
details for estimating the hardware cost of the unitary matrices. Our
area estimation considers the actual chip layout and practical
spacing, which is much more accurate than simply summing up
all device footprint in prior work [15]. All dimensions for optical
components can also be obtained from the GF foundry PDK. We set
Δ𝐿 = 20𝜇𝑚, Δ𝑊 = 100𝜇𝑚,𝑊𝐶𝑅 = 𝐿𝐶𝑅 = 10𝜇𝑚.
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Figure 6: Population size of 40 and Iteration time of 80 achieve
a balance between exploration and efficiency.

Figure 7: Initial mutation rate of 0.1 gives a good exploration.

Power Estimation. The PTC power is estimated as follows [4]:
𝑃 (𝛼 ) = 𝑃laser +𝐾 · (𝑃MZM + 𝑃DAC + 𝑃ADC + 𝑃𝑇 𝐼𝐴 + 𝑃PD ) . (10)

The formula for laser power is: 𝑃laser = 2𝑏 ·10(𝑆𝑃𝐷 +𝐼𝐿)/10
𝜂 , where 𝜂 is the

wall-plug efficiency, 𝑆𝑃𝐷 is the PD sensitivity, IL is the insertion loss
of the circuit, and 𝑏 refers to the ADC bit resolution. Given working
frequency 𝑓 and input bitwidth 𝑏, the power for DAC is derived by:
𝑃𝐷𝐴𝐶 =

𝑏02𝑏 𝑓
𝑏2𝑏0 𝑓𝑠

·𝑃𝐷𝐴𝐶0, where 𝑃𝐷𝐴𝐶0 is the power of DAC at sampling
rate 𝑓𝑠 and 𝑏0 bit precision. The ADC power is derived by: 𝑃𝐴𝐷𝐶 =
𝑏0 𝑓
𝑏𝑓𝑠
·𝑃𝐴𝐷𝐶0, where 𝑃𝐴𝐷𝐶0 is ADC power at sampling rate 𝑓𝑠 and 𝑏0 bit

precision. 𝑃Σ and 𝑃𝑃𝑆 consider the static power of all phase shifters.
Latency Estimation. The PTC latency is determined by the optical
path delay, input modulation, and readout delay as follows:

𝜏 (𝛼 ) = max(𝑓 −1, 𝑛g𝐿path/𝑐0 + 𝜏𝐷𝐴𝐶 + 𝜏𝑃𝐷 ),

𝐿path =

𝐵∑︁
𝑏

(𝐿𝑏𝑃𝑆 + 𝐿
𝑏,𝑚𝑎𝑥
𝐷𝐶

+ 𝐿𝑏,𝑚𝑎𝑥
𝐶𝑅

+ 3Δ𝐿),
(11)

where the clock rate is set to 𝑓 =10 GHz, 𝑐0 is the light speed, 𝑛g is
the group index, 𝐿path refers to the longest optical path length, and
𝜏𝐷𝐴𝐶 and 𝜏𝑃𝐷 refer to the delays of DAC and PD, and they are both
set to 10ps. For the estimation of the longest path length 𝐿path, we
consider the worst-case scenario. We sum up the PS length, largest
coupler length, longest waveguide routing path, and Σ matrix length
to get 𝐿path. If the optical path delay of a very deep circuit cannot
be hidden by one cycle (𝑓 −1), the clock frequency will be reduced to
accommodate the latency accordingly [20].
3.3.6 Two-stage Pareto Front Search Strategy: NSGA-II. We adopt a
Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm [21]
as the search engine to handle multi-objective optimization. Each
search iteration doubles the population size by generating new legal
solutions via crossover and mutation, and then it selects solutions from
the superior Pareto fronts that contribute the most to solution diversity
to maintain a constant population size.

To prioritize exploration at the beginning and gradually focus
on local exploitation, we divide the search process into two phases.
In the first phase, we use all mutations for DC, CR, and Blocks with a
cosine-decayed mutation rate, which allows us to explore better genes
across the search space while ensuring that high-quality genes do not
undergo significant mutations. In the second phase, we set all mutation
rates to 0.02 and remove the two block-level mutation operators and
the RS operator for DC to avoid major gene changes. This ensures that
only minor mutations occur for local search toward optimal solutions.

(a)

(b)

Figure 8: Validate each mutation operator for (a) DC and (b) CR
array. We remove one mutation operator at a time and observe
the distribution of the objective values of the final populations.

Figure 9: Compare the search performance of a constant sched-
uler and our two-stage cosine decay scheduler.

4 EXPERIMENTAL RESULTS
4.1 Experiment Setup
Datasets. During the search phase, we used the MNIST dataset to
estimate Test Accuracy. The solutions found were then evaluated on
the MNIST [22], FMNIST [23], SVHN [24], and CIFAR10 [25] datasets.
NN Models. The PTC topology is searched on a 2-layer CNN model
and MNIST dataset without extensive training. The searched topology
is then applied to other models/datasets.
Searching Settings. We choose the population size to be 40, the max-
imum iterations to be 80, and the initial mutation rate to be 0.1. For
16×16 PTCs, we use (2-port, 8-port) DCs during search. For 𝐾=8 and
32, we use (2-port, 4-port) for 8×8 PTCs and (4-port,16-port) for 32×32
PTCs. We applied area constraint [18.31,24.02]𝑚𝑚2 (80% of butterfly
optical area up to 50% of MZI array optical area, plus electrical area),
power constraint [50, 1000] mW, latency constraint [100, 1000] ps to
the search process. We set 𝑓 =10 GHz and the resolution as 4-bit. For
device cost, we use GF foundry PDK [26] and a customized PDK [27].
Electrical devices are the same as [27].

4.2 Ablation Studies
Population Size and Search Steps. We use the product of three ob-
jectives to reflect the solution quality, and 𝑃𝑎𝑣𝑔 is the average value
across the current populations. Figure 6 shows that 40 populations
evolved for 80 steps have the best quality and runtime balance.
Mutation Rate and Operators. Figure 7 determines the best initial
mutation rate of 0.1 to balance exploration and convergence. To verify
the impact of the designed mutation operators, we removed one op-
erator at a time, showing that all operators positively affect solution
quality both for DC and CR, shown in Fig. 8a and Fig. 8b.
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Figure 10: Comparison of the observed solution points between
random search and evolutionary search.

Figure 11: Visualization of ADEPT-Z-a0 for 𝐾=8, 16, and 32.

Two-Stage Search. Our two-stage search using the cosine mutation
rate scheduler, as shown in Fig. 9, converges faster to higher-quality
solutions than the single-stage search with a constant mutation rate.

4.3 Main Results
In Fig. 10, our solutions are Pareto-optimal as they dominate random de-
signs and priormanual designs in the accuracy-density-efficiency space.
To better evaluate the performance, we introduce two comprehensive
metrics: Area-Energy Efficiency (AEE) and Accuracy-weighted
AEE (AAEE), i.e., Accuracy-AEE product. From the final Pareto
front, we select four designs for each PTC size, named ADEPT-Z-a0 to
ADEPT-Z-a3, and compare them to manual designs, i.e., MZI array [1],
Butterfly mesh [4], and interlaced MMI array [10] in Table 2.

ADEPT-Z-a0 is the best solution in terms of AAEE on all three PTC
sizes. Our solutions balance expressivity and hardware cost compared
to MZI and MMI arrays, showing an overall 2.47× higher AAEE. We
observe that butterfly solutions are roughly located at the Pareto
front. Our solutions are 1.03× better than Butterfly in AAEE, but
our method gives much more diverse designs to cover various ac-
curacy/power/area/latency requirements.

We visualize ADEPT-Z-a1 in Fig. 11. Multi-port DCs are frequently
used for efficient cross-channel interaction. As a result, waveguide
crossings are minimized to mix signals only when necessary to re-
duce hardware costs. Note that we do not compare to gradient-based
ADEPT [15] as ADEPT cannot handle multi-port couplers or non-
differentiable latency/area objectives. Moreover, our method can
find 40 Pareto-optimal solutions within 2.7 hours, 100× faster than
ADEPT, which requires 40×8=320 hours even if it is applicable.
Adapt PTCs to Different Foundry PDKs. Our method can flexibly
adapt different device PDKs. We replaced the GF PDK with a cus-
tomized PDK [27] in Table 3. For a 16×16 PTC size, we applied a new
area constraint of [2.208, 15.197] mm2. The best-performing searched
solution, ADEPT-Z-a0, shows 8.26× higher AAEE than MZI and MMI
arrays and 1.04× compared with Butterfly mesh. Our solutions use
multi-port couplers to enhance information mixing while having fewer

Table 2: Evaluate PTCs with different sizes using GF PDK in
terms of area (optical+electrical) (mm2), power (mW), and la-
tency (ps). We also show compute density (CD) (TOPS/mm2),
energy efficiency (EE) (TOPS/W), area-energy efficiency (AEE)
(TOPS/W/mm2), and accuracy-weighted AEE (AAEE).
𝐾 Metrics MZI [1] Butterly [4] MMI [10] ADEPT-Z-a0 ADEPT-Z-a1 ADEPT-Z-a2 ADEPT-Z-a3

8

Area(O+E) 3.79+8.18 0.92+8.18 3.57+8.18 0.73+8.18 0.83+8.18 0.94+8.18 1.57+8.18
Power 141.09 141.48 141.45 141.92 141.32 141.98 142.74
Latency 100.69 100.00 100.00 100.00 100.00 100.00 100.00
Accuracy 98.68 98.33 98.72 98.22 98.13 98.30 98.38

16

Area(O+E) 15.32+16.36 2.43+16.36 21.16+16.36 2.37+16.36 2.39+16.36 3.38+16.36 3.44+16.36
Power 209.83 283.15 266.64 282.19 282.20 284.18 284.48
Latency 147.25 100.00 107.38 100.00 100.00 100.00 100.00
Accuracy 98.74 98.16 98.58 97.83 97.69 98.27 98.24

32

Area(O+E) 61.56+32.72 6.11+32.72 142.58+32.72 5.62+32.72 6.46+32.72 8.53+32.72 9.77+32.72
Power 316.34 487.36 394.52 563.50 563.52 563.69 563.71
Latency 240.37 122.13 158.26 100.00 100.00 100.00 100.00
Accuracy 98.85 97.88 98.65 97.77 97.62 97.73 97.98

8

CD 0.106 0.141 0.109 0.144 0.142 0.140 0.131
EE 9.010 9.047 9.049 9.019 9.058 9.016 8.967
AEE 0.753 0.995 0.770 1.012 1.005 0.988 0.920
AAEE 0.729 0.978 0.760 0.994 0.986 0.971 0.905

16

CD 0.110 0.272 0.127 0.273 0.273 0.259 0.259
EE 16.570 18.081 17.883 18.144 18.143 18.017 17.997
AEE 0.523 0.962 0.477 0.969 0.968 0.913 0.909
AAEE 0.509 0.944 0.470 0.948 0.946 0.897 0.893

32

CD 0.090 0.432 0.074 0.534 0.523 0.497 0.482
EE 26.934 34.407 32.802 36.344 36.343 36.332 36.332
AEE 0.286 0.886 0.187 0.948 0.928 0.881 0.855
AAEE 0.283 0.867 0.184 0.927 0.906 0.861 0.838

Table 3: 16×16 PTCs on customized PDKs with MNIST accuracy.
Metrics MZI [1] Butterfly [4] MMI [10] ADEPT-Z-a0 ADEPT-Z-a1 ADEPT-Z-a2 ADEPT-Z-a3

Area(O+E) 7.51+0.33 1.25+0.33 16.90+0.33 1.19+0.33 1.22+0.33 1.21+0.33 1.71+0.33
Power 223.59 219.93 219.45 218.37 218.54 218.30 218.93
Latency 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Accuracy 98.74 98.16 98.58 97.67 98.02 98.08 98.18

CD 0.653 3.242 0.297 3.370 3.301 3.322 2.507
EE 22.899 23.280 23.330 23.446 23.429 23.454 23.387
AEE 2.919 14.744 1.354 15.434 15.105 15.215 11.450
AAEE 2.882 14.473 1.336 15.074 14.806 14.923 11.242

Table 4: 16×16 ADEPT-Z-a0 is searched on CNN-MNIST and
adapted to new benchmarks with GF PDKs. AAEE is shown.

Model Dataset MZI [1] Butterfly [4] MMI [10] ADEPT-Z-a0
CNN FMNIST 0.472 0.852 0.432 0.853
VGG8 CIFAR10 0.429 0.744 0.382 0.769

ResNet20 SVHN 0.491 0.884 0.445 0.890

blocks and crossings, thus achieving a better balance between expres-
sivity and efficiency.
Generalizability to New ONNs and Datasets. It is important that
our searched topology can be generalized to new ONNs and datasets
other than the one used for the search.We train our searched PTC struc-
tures on various new benchmarks in Table 4. Though ADEPT-Z-a0 is
searched on 2-layer CNN and MNIST, itmaintains superior performance
and efficiency on more complicated models and datasets, showing an
average of 1.6× higher AAEE than manual baselines.

5 CONCLUSION
In this work, we propose a zero-shot multi-objective evolutionary cir-
cuit topology search framework ADEPT-Z to explore Pareto-optimal
photonic tensor core designs. In an augmented design space with multi-
port couplers, our customized evolutionary algorithm simultaneously
optimizes accuracy, compute density, and efficiency, honoring various
hardware constraints with balanced exploration and exploitation. By
paying less than a 3-hour search cost, our method can obtain tens of di-
verse Pareto-optimal circuit topologies, outperforming state-of-the-art
manual designs with 2× higher accuracy weighted area-energy effi-
ciency, with great flexibility and generalizability to more complicated
applications and new hardware specifications.
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