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Abstract: We propose an optical neuron based on multi-operand microring resonators,
featuring a compact footprint and high scalability with built-in tunable nonlinearity. Experi-
mental results highlight its superior expressivity in machine learning tasks with exceptional
hardware efficiency. © 2024 The Author(s)

1. Introduction

Integrated photonics has emerged as a promising candidate for next-generation artificial intelligence (AI) accel-
erators, addressing the processing bottlenecks and high power consumption of traditional electronic computing
platforms [1]. However, current photonic integrated circuits (PICs) and optical neural networks (ONNs) encounter
several practical challenges, including a large footprint, lack of on-chip nonlinearity, and inefficient electrical-
optical (E-O) interfaces. These limitations hinder their scalability and applicability to modern AI models [1, 2].

To address these challenges, research efforts have focused on enhancing the scalability of ONNs across the de-
vice [2,3], circuit [4], and architecture levels [5]. In this study, we develop a novel microring-based multi-operand
optical neuron (M2OON) with a compact footprint and on-chip trainable nonlinearity. Experimental results vali-
date the functionality and expressivity of M2OON, and the M2OON-based ONN achieves comparable or superior
performance in machine learning tasks with fewer learnable parameters compared to traditional approaches.

2. Design and Working Mechanism

2.1. Multi-operand microring resonators

Compared with conventional microring resonators (MRRs), the multi-operand MRR has k active actuators con-
trolled simultaneously by independent electrical signals. The transmission function of an add-drop multi-operand
MRR at the through port can be expressed as Tt = f (φrt) = f

(
∑

k−1
i=0 g(wi · xi)

)
. Here, φrt represents the round-

trip phase, and g(wi · xi) is determined by the weight/signal encoding mechanism (such as thermal tuning, free-
carrier effect, etc.). This design squeezes a length-k dot-product within a single device and single wavelength
(k× area/power/wavelength saving than MRR arrays [6]) and introduces on-chip nonlinearity by leveraging the
intrinsic transmission characteristic of MRR.

2.2. ONN architecture for M2OON

In this work, we propose an architecture to implement ONN on PICs using M2OON. In Fig. 1.a, an M × N
weight matrix is partitioned into P×Q blocks with a size of k× k, which are then mapped onto a multi-operand
MRR array. To achieve full-range matrix-vector multiplications (MVMs), the Q multi-operand MRRs for each
row of the original matrix are split into positive and negative rails, respectively. A balanced photodetector pair
is used to produce a full-range output. Furthermore, we introduce a learnable balancing factor d to scale each
MORR’s output range adaptively, enhancing the system’s expressivity. The balancing factors are achieved via
Q/2 serial MRRs operating at different wavelengths. Therefore, the output of each row can be expressed as ym =

∑ f
(
∑

k−1
i=0 g(wmqi · xqi)

)
dq, where the sign of dq depends on the polarity of the corresponding rail.

3. Results and Discussions

We taped out a photonic-electronic neural chip with thermo-optic M2OON, which incorporates 4 operands and 2
microheaters for calibration and tunable nonlinearity (Fig. 1.b). For testing, we first calibrated each multi-operand
MRR to its on-resonance state and then fitted the transmission curve using random length-4 vectors as input (Fig.
1.c). To highlight the unique nonlinear neural processing capability of M2OON, we implemented a biomedical
image processing task that applies nonlinear convolution with a Sobel kernel to a human brain MRI slice. Here,
the inputs x and weights w are encoded by a digital-to-analog converter (DAC) and digital potentiometers (POTs),
respectively. The inherent tunable nonlinearity of M2OON allows for more effective feature extraction. As shown
in Fig. 2.a, the feature map extracted by M2OON effectively emphasizes the tumor borders, achieving significantly
higher contrast in edge intensities compared to linear convolution, as evidenced by the pixel histogram (Fig. 2.c).
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Fig. 1: (a) Schematic of M2OON and proposed ONN architecture. (b) Micrographs of a multi-operand MRR and
the M2OON chip with optical and electrical packaging. (c) On-chip measured results and the fitted transmission
curve. The inset shows the nonlinear tuning mechanism of multi-operand MRRs.

Additionally, we implemented binary classification tasks on both M2OON and digital computers, using different
network configurations and activation functions. Leveraging the enhanced expressivity of our learnable nonlinear
neuron, M2OON achieves 100% test accuracy in both tasks, even with a smaller, single-layer network and fewer
parameters compared to conventional digital multi-layer perceptrons (Fig. 2.d).
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Fig. 2: Experimental results of on-chip image processing and the implementation of a classification task. (a) MRI
image and the feature maps extracted using the Sobel kernel.(b) Experimental and ideal waveform of convolution
results. (c) Count distribution of the absolute gray values of the feature maps obtained from linear convolution
and M2OON. The on-chip nonlinearity suppresses small values while emphasizing larger values for edges. (d)
Results of the classification task using different activation functions.

4. Conclusions

This work presents a compact photonic neuron with on-chip trainable nonlinearity and a highly expressive ONN
architecture, addressing scalability and nonlinearity challenges in photonic computing. M2OON demonstrates
superior performance in AI tasks, paving the way for scalable photonic AI accelerators.

References

1. S. Ning, H. Zhu, C. Feng, J. Gu, Z. Jiang, Z. Ying, J. Midkiff, S. Jain, M. H. Hlaing, D. Z. Pan et al., “Photonic-
electronic integrated circuits for high-performance computing and ai accelerators,” J. Light. Technol. (2024).

2. C. Feng, J. Gu, H. Zhu, S. Ning, R. Tang, M. Hlaing, J. Midkiff, S. Jain, D. Z. Pan, and R. T. Chen, “Integrated multi-
operand optical neurons for scalable and hardware-efficient deep learning,” Nanophotonics 13, 2193–2206 (2024).

3. Z. Wang, L. Chang, F. Wang, T. Li, and T. Gu, “Integrated photonic metasystem for image classifications at telecom-
munication wavelength,” Nat. communications 13, 2131 (2022).

4. C. Feng, J. Gu, H. Zhu, Z. Ying, Z. Zhao, D. Z. Pan, and R. T. Chen, “A compact butterfly-style silicon photonic–
electronic neural chip for hardware-efficient deep learning,” ACS Photonics 9, 3906–3916 (2022).

5. A. Sludds, S. Bandyopadhyay, Z. Chen, Z. Zhong, J. Cochrane, L. Bernstein, D. Bunandar, P. B. Dixon, S. A. Hamilton,
M. Streshinsky et al., “Delocalized photonic deep learning on the internet’s edge,” Science 378, 270–276 (2022).

6. A. N. Tait, M. A. Nahmias, B. J. Shastri et al., “Broadcast and weight: An integrated network for scalable photonic
spike processing,” J. Light. Technol. (2014).

MORR


