ROQ: A Noise-Aware Quantization Scheme Towards Robust Optical Neural Networks with Low-bit Controls

Jiaqi Gu¹, Zheng Zhao¹, Chenghao Feng¹, Hanqing Zhu², Ray T. Chen¹, David Z. Pan¹

¹University of Texas at Austin, ²Shanghai Jiao Tong University

Multi-layer Perceptron Inference	Non-ideality in ONNs: Device Variation	Experimental Results
• Input • Vector x • Vector $y = \sigma(W \cdot x)$ • Objective • Accuracy X_1 X_2 X_2 X_2 X_2 X_3 X_3 X_4	• Gamma noise $\Delta \gamma \sim \mathcal{N}(0, \sigma^2)$ • Environmental changes • Manufacturing variations • Temperature changes • Non-ideal phase shifter response: weight error $\langle \Delta W(\Sigma_{i,j}\Delta\phi_{ij}) \rangle = \Delta W(\Delta\phi_{ij}) \propto \Phi $ Theoretical with Variation 2π 2π 2π 2π $(\gamma + \Delta \gamma)v^2$ γv^2_{+}	 Better accuracy under low-bit controls ONN config: 144-64(8)-64(8)-40(10)-10 on MNIST
ONN Architectures	π	40 → Naive Baseline

Proposed Quantization Scheme

- Coarse gradient approximation
 STE-based gradient propagation
- Unitary projection
 Map U and V* to unitary planes
- Blocking matrix multiplication
 Better scalability

- Better noise robustness under 3~6-bit controls
 - Gamma noise: std. 1e-3 ~ 5e-3

Non-ideality in ONNs: Low-Resolution Controls

• Low-precision voltage controls $\Delta_v = v_{max}/(2^b-1)$

Limited phase encoding precision: quantization error

• Only $\lfloor rac{v_{2\pi}}{v_{max}} 2^b
floor$ valid phases within [0, 2 π]

Contribution

Voltage-domain quantization scheme for ONNs

- Traditional post-training quantization and iterative methods fail to train quantized ONNs
- ~90% accuracy under 4-,5-,6-bit voltage controls
- >80% accuracy under 3-bit voltage control

Noise-aware training strategy for ONNs

- Protective Group Lasso regularization technique to boost noise-robustness of quantized ONNs
- >80% inference accuracy under 3-bit control and 5e-3 gamma noise, compared to ~20% for baseline method
- Lower accuracy variation under device-level noise

Conclusion and Future Work

- Experimentally show that previous quantization methods perform poorly on ONN voltage quantization with device noise
- An end-to-end quantization scheme to enable low-precision voltage control of ONNs
- Protective group Lasso technique to boost noise-robustness of quantized ONNs
- Address other noise sources and apply to more ONN architectures

