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⧫ ML models and dataset keep increasing

› Low latency

› Low power

› High bandwidth

AI Acceleration and Challenges
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Autonomous Vehicle Data Center

⧫ Moore’s law is challenging to provide higher-performance computations



⧫ Using light to continue Moore’s Law

⧫ Promising technology for next-generation AI accelerator

AI Acceleration and Challenges

[Shen+, Nature Photonics 2017]
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Optical Neural Networks (ONN)

⧫ Emergence of neuromorphic platforms for AI acceleration

⧫ Optical neural networks (ONNs)
› Ultra-fast inference speed (~ 100 ps)

› >100 GHz photo-detection rate

› Near-zero energy consumption (< 1 fJ / MAC)

⧫ Unsatisfactory non-ideal effects
› Limited voltage control resolution ->    Low precision phase encoding 

› Device-level noise and variation ->    Noise robustness issue

[Shen+, Nature Photonics 2017]



Classical ONN Architecture

⧫ Map weight matrix to MZI arrays

⧫ Singular value decomposition
›

› U and V* are square unitary matrices

› Σ is diagonal matrix

⧫ Unitary group parametrization:
›

› Rij is planar rotation matrix

› Rij with phase     can be implemented 

by an MZI



Non-ideality: Low-bit Control

⧫ Low control precision

› Control complexity consideration

› Voltage control has limited bitwidths

⧫ Challenge

› Non-uniform phase quantization

› Expensive for gradient calculation

Discrete voltage control
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Non-ideality: Device Variation

⧫ Phase shifter Gamma noise  =>  Phase encoding error  => Acc. degradation

⧫ Non-ideal phase shifter response curve

› Theoretical: 

› Practical: gamma noise 

» Environmental changes

» Manufacturing variations

» Temperature changes

» ...

› Larger phase is more noise sensitive

Theoretical w/ Variation



Quantization Scheme

⧫ Coarse Gradient Approximation

› Gradient propagation for voltage quantization

⧫ Unitary projection

› Map matrix U, V* to unitary planes

⧫ Based on blocking matrix multiplication

› Better scalability



Coarse Gradient Approximation

⧫ Model voltage-domain quantization                         as STE

› No intermediate gradient computation

› Efficient coarse gradient propagation

⧫ Wrap clipping

› Invalid large phases will be clipped

› Wrapping will reduce phase error and noise sensitivity



Unitary Projection

⧫ Satisfy orthogonality constraint for unitary matrix U and V*

⧫ SVD-based projection method minimizes projection error

⧫ Projected gradient descent: project onto unitary plane each iteration



Noise-Aware Training

⧫ Protective group Lasso regularization (PGL)

› Penalize less robust weight blocks

› Protective coefficient is dynamically learnable

» Gamma noise injection: 

» Dynamic robustness evaluation

» Learnable coefficient via EMA: 



Experimental Results

⧫ Better Noise-robustness under low-bit voltage controls (3 ~ 6 bits)

Bitwidth Test Acc. Test Acc. w/ variation

Full-precision High 97% 89%

Previous method Low 72% 41%

ROQ Low 94% 91%

4-bit 5-bit



Contribution of This Work

⧫ Voltage-domain quantization scheme for ONN

› Efficient quantized ONN training methodology

› ~90% accuracy under low-bit voltage controls

⧫ Noise-aware training method

› Protective Group Lasso regularization technique is proposed to boost noise-

robustness of quantized ONNs

› >80% inference accuracy under 3-bit control and 5e-3 gamma noise, compared to 

~20% for baseline method

› Lower accuracy variance under gamma noise



Future Directions
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Investigate other robustness issues: thermal crosstalk

Integration with On-chip training and other ONN architectures

Chip tapeout and experimental evaluation




