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Abstract— Optical neural networks (ONNs) have demonstrated
promising potentials for next-generation artificial intelligence
acceleration with ultra-low latency, high bandwidth, and low
energy consumption. However, due to high area cost and lack of
efficient sparsity exploitation, previous ONN designs fail to provide
scalable and efficient neuromorphic computing, which hinders the
practical implementation of photonic neural accelerators. In this
work, we propose a novel design methodology to enable a more
scalable ONN architecture. We propose a nonlinear optical neuron
based on multi-operand ring resonators to achieve neuromorphic
computing with a compact footprint, low wavelength usage, learn-
able neuron balancing, and built-in nonlinearity. The structured
sparsity is exploited to support more efficient ONN engines via
a fine-grained structured pruning technique. A robustness-aware
learning method is adopted to guarantee the variation-tolerance
of our ONN. Simulation and experimental results show that the
proposed ONN achieves one-order-of-magnitude improvement in
compactness and efficiency over previous designs with high fidelity
and robustness.

I. INTRODUCTION

Deep neural networks (DNNs) have shown record-breaking
performance on various artificial intelligence tasks recently.
However, traditional electrical digital computing platforms en-
counter substantial challenges to meet the escalating computa-
tion demands of DNNs in the post-Moore’s era. As an emerging
computing platform, optical neural networks (ONNs) demon-
strate compelling potentials for neuromorphic computing with
ultra-high speed, ultra-low latency, and low energy consump-
tion. Prior work successfully demonstrated ONNs on silicon-
based photonic integrated circuits (PIC). A Mach-Zehnder
interferometer (MZI) based coherent ONN has been proposed
to accelerate matrix multiplication using singular value decom-
position [1], demonstrating ultra-high speed and over 100 GHz
photo-detection rate. Based on MZI arrays, a recurrent ONN
architecture has been demonstrated using waveguide feedback
loops [2]. Since PIC designs currently show less competi-
tive compactness than electrical digitals, recent ONN work
mainly focuses on area reduction and scalability improvement.
A slimmed ONN [3] was proposed to cut down the MZI
usage through a software-hardware co-design methodology.
Later, Fast-Fourier-transform-based integrated ONNs [4], [5]
demonstrated a more compact design in the optical frequency-
domain. Besides, incoherent ONNs have been recently explored
to achieve more scalable designs using a smaller device, optical
micro-ring resonator (MRR). An MRR-based ONN [6] has
been demonstrated with a compact footprint using all-pass

MRR weight banks and photonic digital arithmetic units [7].
The wavelength-division multiplexing (WDM) technique is
leveraged to implement matrix multiplication in parallel with
multiple wavelengths. A variant with a differential structure was
proposed using add-drop MRRs to realize full-range weights
for better model expressivity [8].

However, previous ONN designs still encounter scalability
issues in the practical application. The state-of-the-art coherent
ONNs have already demonstrated 2-4× [3], [4] area reduction
compared to the original MZI-based ONN, but they generally
still have a larger footprint than their incoherent counterparts.
Since the physical dimension of one MRR is typically one-
order-of-magnitude smaller than an MZI, MRR-based ONN
is acknowledged as one of the most compact ONN archi-
tectures so far [6], [8]–[10]. MRR-ONNs are close to the
current area lower bound of integrated ONN designs [6],
[8]–[10], since an MRR is the smallest integrated photonic
device that was previously used to achieve one multiplication,
which makes it technically challenging for further compactness
improvement by using traditional MRRs. Moreover, the high
wavelength usage limits the scalability of MRR-ONNs since
the maximum wavelengths supported by modern dense WDM
(DWDM) techniques are still smaller than the practical matrix
dimension, leading to inevitable area increase due to weight
bank duplication or latency penalty from weight bank reuse.
The robustness concerns and lack of sparsity exploitation also
cast practicality issues for state-of-the-art MRR-ONNs.

To break the current compactness record of integrated silicon
photonic neural networks, in this work, we propose a novel
incoherent ONN architecture SqueezeLight that squeezes
sparse structured matrices into ultra-compact multi-operand
micro-ring resonators to enable scalable, efficient, and robust
optical neurocomputing. The main contributions are as follows,

• Scalability: we propose a scalable ONN architecture based
on multi-operand ring resonators with built-in nonlinearity
and learnable neuron balancing, outperforming prior ONN
designs by one order of magnitude in footprint.

• Efficiency: we explore the structured sparsity in our pro-
posed architecture for quadratic efficiency boost through
fine-grained structured pruning.

• Robustness: we propose a sensitivity-aware learning tech-
nique to overcome device variations and thermal crosstalk
in our architecture.



II. PRELIMINARIES

In this section, we introduce background knowledge about
ONNs and our motivations.

A. Various Neural Network Designs

Classical convolutional neural networks (CNNs) perform dis-
criminative representation and generalization via inner-product-
based convolution. Various kernelized NNs [11] have been
proposed as substitutions with competitive performance. Ex-
tensive linear and nonlinear convolution variants have been
proposed for better robustness or computation efficiency, e.g.,
hyperbolic tangent convolution [12] and AdderNet [13]. In this
work, we propose a nonlinear neuron that leverages the built-in
nonlinearity of multi-operand ring resonators to achieve novel
optical CNNs with comparable model expressivity.

B. Optical Neural Architectures

Recently, extensive researches have been done to investigate
advanced ONN designs [1], [3]–[6], [8]–[10], [14], [15]. Main-
stream linear operators in NNs, e.g., fully-connected layer and
convolution, can be unified as general matrix multiplications
and mapped to photonic circuits. Several coherent ONNs have
been demonstrated for ultra-fast NN inference, e.g., MZI-based
ONNs [1], [3] and FFT-based compact ONN [4], [5]. Incoherent
ONNs based on MRR weight banks have been demonstrated
with a compact footprint [6], [8]. However, the scalability of
MRR-based ONNs is limited by their weight bank size and high
wavelength usage. In this work, we propose a more compact
architecture with a lower device and wavelength usage to break
through the ONN scalability bound.

C. Multi-Operand Ring Resonators

Recently, a multi-operand electro-optic logic gate (MOLG)
has been proposed to achieve multi-operand boolean functions
on a single micro-ring resonator, enabling ultra-compact op-
tical digital computing [16]. The all-pass multi-operand ring
resonator (MORR) is shown in Fig. 1a. k independent ac-
tive thermal actuators along the MORR are simultaneously
controlled by k electrical signals x, each inducing a phase
shift φi(xi). The accumulated round-trip phase shift causes a
spectrum redshift ∆λ, such that the transmitted intensity on
the through port changes accordingly. Figure 1b demonstrates
the transmission spectrum of an all-pass MORR. Weighted
phase shifts can be achieved by different actuator arm lengths,
different input ranges, or different materials, etc [16]. The
transfer function of a k-operand all-pass MORR is,

y =

∣∣∣∣ r − ae−jφ1− rae−jφ
∣∣∣∣2d, φ =

k−1∑
i=0

φi(xi), φi(xi) ∝ wix2i ,

(1)

where xi is the electrical input voltage, wi is the corresponding
weight for the i-th input, φi(·) is the quadratic phase shift
response curve of the thermal actuator, φ is the accumulated
round-trip phase shift of the MORR, r and a are self-coupling
coefficient and single-pass amplitude transmission factor, and
d, y ∈ [0, 1] are the light intensity on the input port and through
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Fig. 1: (a) Structure of an all-pass k-operand MORR. (b)
Through port intensity transmission of an all-pass MORR.

port, respectively. Instead of using it as a digital logic gate, we
introduce a novel ONN architecture that leverages MORRs in
analog neuromorphic computing.

III. PROPOSED OPTICAL NEURAL NETWORK
ARCHITECTURE

In this section, we discuss details on the proposed ONN
architecture shown in Fig. 2 and several essential techniques
for scalability and efficiency improvement.

A. MORR-based Nonlinear Neuron

Different from previous matrix multiplication based ONN
designs that only focus on linear projection, we introduce a
novel ONN architecture based on an ultra-compact MORR to
perform efficient analog neural computing. To leverage the
nonlinear transmission equation of MORRs in Eq. (1), we
first align the idle device to an on-resonance state, where the
transmitted light intensity is close to 0. Then we abstract the
computational model of the MORR as follows,

y = f(

k−1∑
i=0

φi)d ∝ f
( k−1∑
i=0

wix
2
i

)
d, s.t. wi ≥ 0 (2)

where f(·) represents the built-in nonlinear y − φ curve given
by Eq. (1). Note that within the practical wavelength range,
the shape of the transmission curve keeps almost identical at
different wavelengths [17], thus we are justified to assume the
same nonlinear curve f(·) for all MORRs. Different from the
traditional micro-ring resonator (MRR) that encodes a single
weight on its transmission factor with one wavelength, this
MORR directly performs length-k vector computation with one
device, one wavelength, and direct electrical inputs.

Based on the above MORR neuron, we propose a novel
ONN architecture shown in Fig. 2. Our architecture starts with
a single laser input and an on-chip frequency comb to generate
multiple wavelengths (λ0, λ1, · · · ). Then, a series of narrow-
band MRR modulators are used to perform wavelength-wise
scaling D = (d0, · · · , dQ/2−1) ∈ [0, 1] to achieve an adaptive
dynamic range of MORRs. A WDM multiplexer is used to
evenly distribute the WDM light into 2M rows. The main part
is a 2M × N

2k array that implements an ONN layer with built-
in nonlinearity and neuron balancing. For an M × N weight
matrix W , there are total 2M rows and Q

2 = N
2k columns in the

MORR array. The q-th MORR in one row will resonate at the
wavelength λq and perform nonlinear projection on its length-k
input as yq = f(

∑k−1
i=0 wqix

2
qi)dq . At the end of the m-th row,
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Fig. 2: Proposed MORR-based ONN architecture SqueezeLight with learnable neuron balancing.
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structured pruning.

a photo-detector is used to generate photo-current based on the
accumulated light intensity as Im =

∑Q/2−1
q=0 ymq .

Note that non-negative weights will limit the solution space,
thus we introduce a learnable neuron balancing structure to
enhance the crossbar array with a differential structure shown
in Fig. 2. Adjacent rows are designed to be the positive rail I+

and negative rail I− respectively. The differential photo-current
structure at the end is able to generate full-range of outputs,

ym = G(I+m − I−m) = G
(Q/2−1∑

q=0

ymq −
Q−1∑

q=Q/2−1

ymq
)
, (3)

where G is the gain of the transimpedance amplifier (TIA),
which can be used to extend the signal range. Note that if
d = 1, all MORRs will have the same importance, i.e.,
ymq ∈ [0, 1],∀q. To further boost the representability of our
MORR neuron, we adaptively set the dynamic range of each
MORR by learning the balancing factors D̃ = {d̃q|d̃q ∈
[−Gmax, Gmax], d̃q = d̃q (mod) Q

2
, q ∈ [0, Q − 1]}, shared by

a column of MORRs,

ym =

Q−1∑
q=0

f
( k−1∑
i=0

wmqix
2
qi

)
d̃q. (4)

The maximum TIA gain Gmax expands the implementable
range to d̃ ∈[-Gmax, Gmax]. Though all-pass MRR modulators
can only implement non-negative scaling, a negative factor

d̃ < 0 can be realized by simply swapping the rails of
corresponding MORRs as shown in Fig. 3. This learnable
neuron balancing technique enables adaptive rail assignment
and trainable dynamic range for different MORRs, boosting
the expressivity of our architecture with balanced output distri-
butions and weighted MORR importance. Note that as a side-
effect, we can also save another 2× wavelength usage through
splitting one length-Q row into two length-Q2 rails.

B. Peripheral Units

We briefly discuss the entire dataflow and peripheral units,
with all system-level details being omitted, but we clarify that
advanced system-level innovations should be applicable to our
architecture as well [6], [9].

1) Normalization: Normalization layers, e.g., BatchNorm,
can be simply implemented by the TIA gain and voltage signal
offset without causing further latency penalty.

2) Nonlinear Activation: Since our proposed neuron has
built-in nonlinearity, we do not adopt extra activations.

3) Electrical Dataflow: The input signals/weights are loaded
from high-bandwidth SRAM or ultra-fast photonic racetrack
memory banks [18], and converted to analog signals through
electrical digital-to-analog converters (DACs). The detected
results are amplified by TIAs. Direct optical-electrical-optical
(O-E-O) conversions will be used to cascade multiple ONN
layers without voltage-to-transmission encoding.

C. Area Reduction via Block-Squeezing

To achieve a quadratically more compact design, we adopt
a block-squeezing method to further improve the scalability.
Motivated by structured neural networks that demonstrate com-
parable model expressivity and better efficiency than classic
NNs, we introduce this concept to SqueezeLight for higher
compactness. Figure 3 visualizes the mapping from 6 × 6
structured blocks to our MORR array. An M × N block-
structured matrix W consists of P × Q square sub-matrices
{wpq}P,Qp,q=0, each being a k × k structured matrix. A k × k
circulant matrix is defined by a length-k primary vector on its
first row. Thus each partial projection wpq ·xq can be efficiently
implemented by reusing one k-operand MORR for k times with
rotated inputs. In this way, we successfully achieve O(k2) times
area reduction and k times wavelength usage reduction.
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Fig. 4: Transmission curve f and its gradient∇φf with thermal
crosstalk and sensitivity-aware training.

D. Sparsity Exploration via Fine-Grained Structured Pruning
For an M ×N matrix with k×k structured blocks, the total

components add up to N
2 MRRs and (MN

k2 ) k-operand MORRs.
Given fixed M and N , a larger k leads to fewer blocks and less
MORR usage. However, it could be challenging for manufactur-
ing such MORRs with too many actuator sections. To overcome
this, we explore a fine-grained structured sparsity by pruning
each sub-matrix with a uniform sparsity. In Fig. 3, entries that
are less important in the primary vector are forced to zero, with
k′ weights left. The matrix structure will automatically prune
corresponding entries in other rows. Once the sub-matrix is
larger than the MORR capacity, i.e., k > kmax, this technique
can maintain the highest compactness by sequentially squeezing
the pruned block into one MORR with k′ ≤ kmax. A two-stage
pruning procedure with learning rate rewinding is described in
Alg. 1. After pre-training, the weights are pruned with a target
sparsity. Then the model will be trained from scratch with a
rewound learning rate to achieve better accuracy than traditional
post-training fine-tuning.

E. Robustness Boost via Sensitivity-Aware Optimization
The major non-ideal effects of MORRs come from random

variations and deterministic intra-MORR thermal crosstalk. The
random variations can be modeled as a Gaussian noise on the
phase shift ∆φ ∈ N (0, σ2). The intra-MORR crosstalk among
adjacent k thermal actuators can be formulated as Φ̂ = Γ ·Φ
governed by a coupling matrix Γ as follows,

φ̂0

φ̂1

· · ·
φ̂k−1

 =


γ0,0 γ0,1 · · · γ0,k−1

γ1,0 γ1,1 · · · γ1,k−1

...
...

. . .
...

γk−1,0 γk−1,1 · · · γk−1,k−1


 φ0

φ1

· · ·
φk−1

 , (5)

Without loss of generality, we assume the self-coupling factor
γi,i = 1 and all mutual coupling factors γi,j share the same
value γ for efficient estimation. The above crosstalk can be
simplified as a constant scaling factor on φ as follows,

ŷm =

Q−1∑
q=0

f
(

(1 + (k′ − 1)γ)φmq + ∆φ
)
d̃q. (6)

Only k′ actuators have crosstalk after pruning, thus our pruning
can improve the robustness by reducing the noise sources. Fig-
ure 4 shows that the transmission curve f(·) has different sensi-
tivity (gradient) on different wavelengths. Crosstalk variations

Algorithm 1 Training algorithm of SqueezeLight with fine-
grained structured pruning and sensitivity-aware optimization.

Input: Initial weights W 0 ∈ RP×Q×k and D̃0 ∈ RQ/2, pruning
percentage T = 1 − k′

k
, pretraining step tpre, initial step size

η0, decay factor β, penalty weight α, variation ∆φ, and crosstalk
coupling matrix Γ;

Output: Converged wt, dt, and a pruning mask M∈ ZP×Q×k;
1: for t← 1, · · · , tpre do . Stage 1: Pretraining
2: L ← Lt0(x;W t−1, D̃t−1)
3: (W t, D̃t)← (W t−1, D̃t−1)− ηt−1(∇WL,∇D̃L)
4: ηt ← ηt−1β . Learning rate decay
5: ηt ← η0,M← 1 . Learning rate rewinding and initialize mask
6: for all W t

pqi ∈W t do
7: if W t

pqi < percentile(W t
pq, T ) then

8: Mpqi ← 0 . Compute pruning mask
9: while not converged do . Stage 2: Fine-grained pruning

10: L ← Lt0(x;M�W t−1, D̃t−1,Γ,∆φ) + αLS(Γ,∆φ) .
Sensitivity-aware regularization

11: (W t, D̃t)← (W t−1, D̃t−1)− ηt−1(∇WL,∇D̃L)
12: ηt ← ηt−1β . Learning rate decay

induce an extra redshift in the spectrum, forcing all φ < φs
to have higher sensitivity and φ ≥ φs to have less sensitivity.
To improve the robustness, we introduce a sensitivity-aware
optimization method, shown in Alg. 1, to model the variations
when training an L-layer SqueezeLight with the objective,

L=L0(x;W , D̃,Γ,∆φ) + α

L−1,M−1,Q−1∑
l,m,q=0

∇φf(φ̂lmq + ∆φ), (7)

where L0(x;W , D̃,Γ,∆φ) is the task-specific loss with noise
injection, and the second term, denoted as LS(Γ,∆φ), is a
sensitivity-aware penalty term weighted by α. This method
jointly considers variations and crosstalk with a gradient-based
sensitivity penalty, enabling close-to-ideal test accuracy.

IV. HARDWARE FEASIBILITY AND EFFICIENCY

We give a theoretical analysis of the hardware feasibility and
efficiency, and compare essential features with previous ONNs.

A. MORR Physical Feasibility

Our MORR leverages the analog property of a successfully
demonstrated digital MOLG [16]. We solve the possible res-
onator sensitivity issue by using a low-quality-factor (low-Q)
MORR filter. Typical MRR filters have a Q value of 5,000 [6],
[8], [10], while in our case, we design the MORR with a low
Q value of ∼2,000 and a large wavelength tuning range of ∼4
nm. Therefore, the controllability will not be a concern.

B. Area, Latency, and Power

In Table I, our architecture outperforms those three previous
coherent ONNs by a large margin [1], [3], [4]. Therefore,
we focus on the comparison of area cost A, latency τ , and
power P with the most compact designs MRR-ONN-1 [6]
and MRR-ONN-2 [8] in Table I. We assume the current
DWDM capacity is B, representing the maximum number
of wavelength available [19], [20]. First, the size and power
of an MRR and a k-operand MORR can be assumed the



TABLE I: Hardware cost and feature comparison. The matrix is M ×N with size-k blocks. B is the DWDM capacity. For fair
comparison, the device counts are converted to #MRRs based on real device sizes [1], [4], [21]. The area ratio βa and power
ratio βp between one MZI (240×40 µm2 [1], ∼48mW [21]) and one MRR (20×20 µm2,∼4mW [17]) are βa=24 and βp=12.

MZI-ONN [1] Slim-ONN [3] FFT-ONN [4] MRR-ONN-1 [6] MRR-ONN-2 [8] SqueezeLight
#MRRs βaMN ∼ βa

2
MN ∼ βa

4
MN M min (N,B) M min (N,B) 2M

k
min( N

2k
, B)

#Wavelength 1 1 1 min (N,B) min (N,B) min ( N
2k
, B)

Latency 1 1 1 dN
B
e dN

B
e kd N

2kB
e

Power βpMN ∼ βp
2
MN ∼ βpMN M min (N,B) M min (N,B) 2M

k
min( N

2k
, B)

Nonlinearity Electrical Electrical Electrical Electrical Electrical Built-in
Output range Non-negative only Non-negative only Non-negative only Non-negative only Full range Full range
Control complexity High Medium-High High High High Medium

same since they have the same phase tuning range, i.e., half
of the resonance curve. Therefore, we focus on the number
of resonators in the discussion. We denote the computation
efficiency as E = (APτ)−1. SqueezeLight achieves the
following improvement over two MRR-ONNs when the matrix
dimension is smaller than the DWDM capacity, i.e., N < B,

Aours
Aprev

≈ PoursPprev
≈ 1

k2
,
τours
τprev

=
kdN/Be
dN/(2kB)e =k,

Eours
Eprev

≈ k3. (8)

Once the matrix width is larger than the maximum number of
wavelengths available as N

2k < B < N , we can achieve,

Aours
Aprev

≈ PoursPprev
<

2

k
,
τours
τprev

=
k

dN
B
e
,
Eours
Eprev

≈ Bk3

N
>
k2

2
. (9)

If the weight matrix is even larger, i.e., B < N
2k , we have

Aours
Aprev

≈ PoursPprev
≈ 2

k
,
τours
τprev

≈ 1

2
,
Eours
Eprev

≈ k2

2
, if B <

N

2k
. (10)

It can be observed that our ONN gains more hardware effi-
ciency advantage as B scales up, thus our scalability grows
together with the development of the DWDM technology.

C. Feature Comparison

Several essential features are compared in Table I. Previous
ONNs only focus on matrix multiplication, with nonlinearity
being offloaded to the electrical domain. In contrast, our
proposed neuron leverages the built-in nonlinearity in MORRs
to eliminate the overhead from electrical activation, enabling
higher speed and efficiency. In terms of model expressivity,
MRR-ONN-1 [6] has a limited solution space with only positive
weights, while our designs support exploration in an augmented
parameter space via learnable neuron balancing. Our ONN also
shows lower control complexity and higher efficiency via direct
signal encoding vx = x, while previous MRR-ONNs require
additional mapping to transform the encoded inputs/weights
into voltage signals vx =

√
φ−1(f−1(x)).

V. EXPERIMENTAL RESULTS

We conduct optical simulation for functionality validation
and comparison experiments on MNIST , FashionMNIST (FM-
NIST) , and Cifar-10 dataset . We implement all models in
PyTorch and evaluate the accuracy on a machine with an Intel
Core i7-9700 CPU and an NVIDIA Quadro RTX 6000 GPU.
All ONNs are trained for 100 epochs using the Adam optimizer.
Quantization-aware training [22] is applied to perform 8-bit
weight/input/activation quantization on all models.
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Fig. 5: Comparison between theoretical and simulated results.

A. Fidelity Validation via Optical Simulation

To validate the functionality of the MORR-based neuron,
we perform optical simulation using the commercial Lumerical
INTERCONNECT tool. Figure 5 plots the theoretical and
simulated outputs of a 4-operand MORR under 1- to 4-bit
precision. The derived neuron model has a high fidelity with
<1% relative error compared with simulation results.

B. Comparison Experiments

We compare the inference accuracy among four ONNs: 1)
MRR-ONN-1 with all-pass MRRs, 2) MRR-ONN-2 with add-
drop MRRs, and 3) our proposed architecture without pruning
(Ours). In all dataset and ONN settings, SqueezeLight
achieves comparable test accuracy with 20-30× fewer res-
onators, 8× lower wavelength usage, and ∼80% fewer param-
eters. We also evaluate our architecture with low-bit quanti-
zation. Even binarized SqueezeLight can achieve >95%
accuracy on MNIST with the large model, and >98% accuracy
can be achieved on 2-8 bit precision.

C. Fine-Grained Structured Pruning

In Table III, the pruned architecture reduces the manufactur-
ing and control complexity as the sparse sub-matrices k′ = 4
can be implemented only 4-operand MORRs, with no accuracy
loss. Moreover, memory efficiency is also improved due to
an extra 30% parameter reduction. This enables us to squeeze
larger blocks into one MORR with a regular sparsity for better
scalability with negligible accuracy loss.

D. Variation-Robustness Evaluation

In Fig. 6, we evaluate the variation-robustness on 1) MRR-
ONN-1, 2) MRR-ONN-2, 3) our unpruned architecture (Ours),
4) our pruned architecture (Ours-P), and 5) ours with pruning



TABLE II: Accuracy and hardware cost comparison. small model is C32K5S2-BN-C32K5S2-BN-F10, where C32K5S2 is 5×5 convolution
with 32 kernels and stride 2, BN is BatchNorm, and F10 is a linear layer. large model is C64K5S2-BN-C64K5S2-BN-F10. We use k = 8 in
convolutional layers and k = 4 in the final classifier. #Device, #λ, and #Param are the number of used resonators, wavelengths, and parameters,
respectively. Normalized ratios are shown in the parenthesis. All models are trained with 8-bit weight/input/activation quantization.

Dataset Model MRR-ONN-1 [6] MRR-ONN-2 [8] Ours
Test Acc. #Device #λ #Param Test Acc. #Device #λ #Param Test Acc. #Device #λ #Param

MNIST small 97.81 39.90 K (23.86) 1152(8) 38 K 98.55 39.90 K (23.86) 1152(8) 38 K 98.01 1.67 K (1.00) 144(1) 8 K
MNIST large 97.89 130.97 K (31.64) 2304(8) 127 K 98.84 130.97 K (31.64) 2304(8) 127 K 98.36 4.14 K (1.00) 288(1) 22 K

FMNIST small 86.97 39.90 K (23.86) 1152(8) 38 K 89.52 39.90 K (23.86) 1152(8) 38 K 86.65 1.67 K (1.00) 144(1) 8 K
FMNIST large 87.75 130.97 K (31.64) 2304(8) 127 K 90.30 130.97 K (31.64) 2304(8) 127 K 87.21 4.14 K (1.00) 288(1) 22 K
Cifar-10 large 48.79 143.37 K (28.50) 3136(8) 139 K 61.69 143.37 K (28.50) 3136(8) 139 K 58.29 5.03 K (1.00) 392(1) 26 K

TABLE III: Fine-grained structured pruning evaluation. #8op rep-
resents the number of 8-operand MORRs. Ours-P represents all
convolutional layers are pruned from k=8 to k′=4.

Dataset Model Ours Ours-P
Acc. #8op #4op #Param Acc. #8op #4op #Param

MNIST small 98.01 416 864 8 K 98.02 0 1280 6 K
MNIST large 98.36 1632 1728 22 K 98.58 0 3360 16 K

FMNIST small 86.65 416 864 8 K 86.50 0 1280 6 K
FMNIST large 87.21 1632 1728 22 K 87.36 0 3360 16 K
Cifar-10 large 58.29 1680 2352 26 K 60.52 0 4032 19 K

Fig. 6: Robustness evaluation of the large model on MNIST.
The error bar indicates ±1σ variance on 20 runs. For example,
0.04 means γ=0.04 and std. ∆φ=0.04. Ours-PR represents
pruned model with sensitivity-aware training (α=0.02).

and robustness-aware training (Ours-PR). With the additional
intra-MORR crosstalk, our ONN shows lower accuracy than
other MRR-ONNs if pruning and nonideality modeling is not
performed. When fine-grained structured pruning is applied, the
crosstalk sources are cut down from k = 8 to k′ = 4, achieving
improved noise-tolerance. With sensitivity-aware training based
on Eq. (7), the test accuracy maintains above 97% with a
small variance which is reasonably close to the ideal accuracy,
while other ONNs show a rapidly-degrading trend as the
noise intensity increases. Therefore, our proposed architecture
guarantees reliable inference even under practical non-ideal
variations by using our lightweight robustness-aware training.

VI. CONCLUSION

In this work, we propose a novel ONN architecture
SqueezeLight to break the compactness record of previous
designs with higher scalability and efficiency. An MORR-based
ultra-compact optical neuron is demonstrated with learnable
neuron balancing and built-in nonlinearity. A block-squeezing
technique with fine-grained structured pruning is proposed to
achieve a quadratically more compact ONN design. Our pro-
posed sensitivity-aware training method enables close-to-ideal
neural computing with high robustness. We give a theoretical
analysis to show the scalability and efficiency advantage of
our ONN design. Experiments show that SqueezeLight
provides a practical solution for ONNs with high accuracy and
20-30× better scalability and efficiency than prior designs.
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