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Abstract— Nanophotonic device design aims to optimize pho-
tonic structures to meet specific requirements across various
applications. Inverse design has unlocked non-intuitive, high-
dimensional design spaces, enabling the discovery of compact,
high-performance device topologies beyond traditional heuristic or
analytic methods. The adjoint method, which calculates analytical
gradients for all design variables using just two electromagnetic
simulations, enables efficient navigation of this complex space.
However, many inverse-designed structures, while numerically
plausible, are difficult to fabricate and highly sensitive to physical
variations, limiting their practical use. The discrete material
distributions with numerous local-optimal structures also pose
significant optimization challenges, often causing gradient-based
methods to converge on suboptimal designs. In this work, we
formulate inverse design as a fabrication-restricted, discrete, prob-
abilistic optimization problem and introduce BOSON−1, an end-to-
end, adaptive, variation-aware subspace optimization framework
to address the challenges of manufacturability, robustness, and
optimizability. We explicitly consider the fabrication process and
differentiably optimize the design in the fabricable subspace.
To overcome optimization difficulty, we propose dense target-
enhanced gradient flows to mitigate misleading local optima and
introduce a conditional subspace optimization strategy to create
high-dimensional tunnels to escape local optima. Furthermore, we
significantly reduce the prohibitive runtime associated with opti-
mizing across exponential variation samples through an adaptive
sampling-based robust optimization method, ensuring both effi-
ciency and variation robustness. On three representative photonic
device benchmarks, our proposed inverse design methodology
BOSON−1 delivers fabricable structures and achieves the best
convergence and performance under realistic variations, outper-
forming prior arts with 74.3% post-fabrication performance. We
open-source our codes at link.

I. INTRODUCTION

Integrated photonics has shown a wide range of applications
in computing, communication, and sensing. Currently, many
photonic devices are manually architected by tuning a few
design parameters via inefficient trial and error, which relies
heavily on expert knowledge and time-consuming simulations.
In contrast, inverse design requires minimal physical prior
knowledge and opens up non-intuitive, high-dimensional design
spaces, making it possible to discover highly efficient and
compact device designs [8], [13]. The adjoint method-based
inverse design [8] is particularly powerful for its ability to
compute analytical gradients of an objective with respect to
high-dimensional design variables using only two simulations.
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Fig. 1: Inverse design often yields non-fabricable devices.
Optimization difficulty leads to suboptimal designs.

While the adjoint inverse design can produce numerically
plausible designs, a significant gap exists between pre-fab and
post-fab performance. As illustrated in Fig. 1, the inverse-
optimized design exhibits high performance, but the tiny
structures within the design pattern are non-manufacturable,
leading to severe post-fabrication performance degradation.
Additionally, fabrication variations during lithography and
etching, along with operational variations such as temperature
drift, introduce robustness concerns that further compromise the
performance of inverse-designed devices. Previous approaches
have attempted to address manufacturability issues by con-
trolling the minimum feature size (MFS) during optimiza-
tion through heuristic methods, such as blurring or adding
curvature penalties, to eliminate non-fabricable structures and
mitigate post-fabrication performance drops [1], [4], [6], [9],
[12], [16]–[19], [23]. To enhance fabrication robustness, prior
work models variations as uniform erosion and dilation of
the device geometry and simultaneously optimizes objectives
under different variation corner cases. However, this over-
simplified method only marginally improves robustness as it
fails to capture actual variations accurately. When considering
multiple variation effects, exhaustive Monte Carlo sampling of
all corner cases induces exponential simulation cost. Beyond
fabricability, solving this discrete high-dimensional stochastic
optimization problem is particularly challenging. As the
adjoint optimizer is only driven by a single objective sparsely
defined in the device output port, it leads to a poor objective
landscape shown in Fig. 1, making the optimization highly
sensitive to initialization and prone to getting trapped in unrea-
sonable suboptimal solutions.
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https://github.com/ScopeX-ASU/BOSON


To address the photonic device inverse design challenge,
which requires both fabricability and robustness, we formulate
this task as a fabrication-restricted, robust stochastic optimiza-
tion problem. We propose a novel inverse design framework,
BOSON−1, which enables effective optimization directly within
the fabricable subspace with full variation awareness, ensuring
efficient inverse design toward robust device structures. Our
main contributions are as follows:

• We provide a comprehensive analysis of the fabricability
and optimization challenges in inverse design and intro-
duce BOSON−1, an adaptive, variation-aware inverse design
framework for physically robust photonic devices.

• Fabrication-Aware Subspace Optimization: BOSON−1

integrates differentiable fabrication modeling into adjoint
optimization to ensure devices in the fabricable subspace.

• Loss Landscape Reshaping: BOSON−1 largely reduces the
specious local optima by introducing auxiliary dense objec-
tives, enhancing gradient flow and improving optimization.

• Local Optima Escaping: We introduce a light-concentrated
initialization method with conditional subspace relaxation,
facilitating escaping local optima toward better solutions.

• Linear-Cost Variation-aware Optimization: We propose
an adaptive variation optimization method based on novel
axial corner sampling and worse-case optimization, reduc-
ing simulation costs from exponential to linear.

• On three photonic device benchmarks, our BOSON−1

achieves 74.3% performance enhancement on average com-
pared to previous art, enabling variation-robust photonic
inverse design with high efficiency.

II. PRELIMINARY

We will briefly illustrate the basic concepts in fabrication
and variations and review previous work focusing on improving
fabricability and robustness.

A. Fabrication and Operation Variations

The binary photonic device pattern from inverse design often
deviates from the real device due to the limited resolution
in fabrication and the non-ideality in actual operation, e.g.,
temperature drift. We decoupled this complication process into
the following three steps as shown in Fig. 2.
Lithography. During photolithography, light shines through
the mask to transfer the design pattern onto the wafer, as shown
in step 1 of Fig. 2. However, due to diffraction, the light
intensity distribution on the wafer differs from the intended
design, often leading to the loss of small features. Moreover,
lithography in practice induces variations in focus, defocus, and
exposure dose, causing further structure discrepancy from the
desired one. In this work, we utilize a differentiable lithography
model [22] based on the Hopkins diffraction equation to predict
the three corner cases of the post-lithography pattern using the
inverse-designed mask.
Etching. Following lithography, the etching process is applied
to the exposed wafer, removing material from the exposed
regions to form the device structures. We model this process

as a binarization projection applied to the continuous post-
lithography pattern using a specific threshold, η. In practice,
etching introduces spatial variations across the wafer. In this
work, we model these spatially varying etching effects by
characterizing η as a random field, utilizing the expansion
optimal linear estimation (EOLE) method [15].
Operation Variations. The last step in Fig. 2 refers to
the variation during practical operation that will cause the
permittivity to drift from its nominal value. In this work, we
consider the temperature-caused permittivity drift. Since we
use air as the void (cladding) and silicon as the solid to build
the photonic devices, we model the temperature-dependent Si
permittivity by ϵSi(t) = (3.48 + 1.8× 10−4 · (t− 300))2 [10]

B. Prior Fabrication-Robust Photonic Inverse Design Methods

Minimum feature size (MFS) control is a widely used
technique to enhance fabricability. Designs can be intentionally
parametrized to form smooth gating structures [1] that meet the
MFS requirements of the foundry. However, this method is not
applicable to complex 2-D patterns. Low-pass filters or blurring
have been applied to remove high-frequency features from pre-
fabrication patterns [12]. This method is only an approximation
of the lithography process and cannot fully guarantee perfor-
mance after actual lithography and etching. To account for
etching variations, previous work has optimized both the nom-
inal design and the dilated/eroded versions to achieve robust
gating structures against over-etching and under-etching [1],
[7], [20]. However, the uniform etching threshold used in this
method oversimplifies the actual etching effects, which limits
their robustness in real-world fabrication scenarios. Moreover,
the exhaustive corner sweeping-based method [1] results in
exponential simulation costs, making it unscalable for handling
more complex variation models.

III. ROBUST PHOTONIC INVERSE DESIGN WITH ADAPTIVE
VARIATION-AWARE SUBSPACE OPTIMIZATION

We first give a formulation of robust inverse design problem
and analyze its fabrication constraints and robust optimization
challenges. To solve those challenges, BOSON−1 proposes to
directly optimize the design pattern in a low-dimensional
manufacturable subspace and enable efficient and robust
optimization via gradient-enhanced landscape reshaping, condi-
tional subspace optimization, and adaptive variation sampling.

A. Problem Formulation

Our goal is to optimize the design variables θ ∈ RN

so that the corresponding binary design pattern ϵ can obtain
the maximum expected post-fabrication figure-of-merits (FoM)



under variations. We formulate this task as a constrained,
discrete, stochastic optimization problem as follows,

θ∗ = argmax
θ∈Θ

ET,η,LF (ϵ(θ)|λc),

s.t. ˜̄
ρ′ = (Tt ◦ Eη ◦ Ll ◦ P)(θ)

ϵ = ϵv + (ϵs − ϵv) · ˜̄ρ′

P : θ ∈ RN → ρ ∈ {0, 1}N
x×Ny

Ll : ρ ∈ {0, 1}N
x×Ny

→ ρ̄ ∈ [0, 1]N
x×Ny

Eη : ρ̄ ∈ [0, 1]N
x×Ny

→ ˜̄ρ ∈ {0, 1}N
x×Ny

Tt : ˜̄ρ ∈ {0, 1}N
x×Ny

→ ˜̄
ρ′ ∈ {0, αt}N

x×Ny

(1)

where θ are latent design variables that encode the topology
of the device pattern ϵ. The compound mapping function from
θ to ϵ includes the following transformations. (1) P: it maps
θ to a Boolean pattern ρ that indicates the probability of solid
material ϵs and void space ϵv . In this work, we adopt a popular
level set method [21] to parameterize the topology. (2) Ll: the
lithography model maps ρ to a non-binary post-litho pattern
ρ̄; (3) Eη: the etching model maps the post-litho pattern to
a binarized post-etching pattern ˜̄ρ; and (4) Tt: it represents
the actual operational condition that can potentially change the
device permittivity.

The target is not to maximize the objective F (·) for central
wavelength λc at a single nominal device design point, but the
expected performance over random variations during fab-
rication and operation T , η, and L. L ∈ {lmin, lnorm, lmax}
refers to different lithography corners due to defocusing. η is
the random spatially varying etching threshold field that leads
to pattern distortion. T represents the undesired permittivity
drift during actual device operation, e.g., temperature drift.

B. Understanding the Fabricability Constraint and Optimiza-
tion Difficulty of Photonic Inverse Design

Based on the above complex formulation, we thoroughly ana-
lyze its subspace optimization property and pinpoint sources of
optimization difficulty, which motivates our proposed BOSON−1

methodology.
1) Fabrication Constraints: We decouple the fabrication

into two cascaded processes: lithography Ll and etching Eη .
Lithography. As shown in Fig. 2(a), fine-grained voids or
solids are blurred and removed, and edges with shape curvature
are smoothed since the feature sizes are smaller than the diffrac-
tion limit. This is the main mechanism that restricts the device
patterns to the low-dimensional manufacturable subspace.
Etching. As shown in Fig. 2(b), etching is modeled as a
binarization projection of the post-litho patterns. Small features
can hardly survive under the non-ideal etching threshold, e.g.,
under-etching removes small holes in Fig. 2(b).

Both processes have non-ideal variations in practice, which
complicates the inverse design problem as a stochastic opti-
mization over different fabrication conditions.

2) Optimization Difficulty: A common observation of pho-
tonic inverse design is that the adjoint optimization often
converges to sub-optimal or even unreasonable design pat-
terns. We attribute this phenomenon to the following reasons.

➊ The traditional single objective, e.g., transmission, leads
to poor properties of the loss landscape, where numerous
undesired yet sharp local optima/saddle points hinder effec-
tive exploration. ➋ The traditional design objective is overly
sparse, i.e., transmission through a small monitor, which causes
optimization instability due to vanishing gradients when no
lights pass through the monitor. ➌ Due to the binary nature of
the optimization, the highly discrete non-convex problem leads
to high sensitivity to initialization. ➍ Stochastic optimization
requires optimizing over the entire variation distribution. Naive
Monte Carlo sampling or corner sweeping method has a pro-
hibitive cost and attention distraction and is thus unstable,
inefficient, and leads to sub-optimal robust design.

To tackle these difficulties, several questions have to be
answered first:
➊ What defines a good loss landscape for adjoint gradient-
based photonic inverse design? Finding a high-quality design
becomes exceedingly challenging with a poorly structured loss
landscape. In Fig. 3, we illustrate this using an optical isolator
as an example, where the objective is to minimize transmission
contrast ratio Ebwd

Efwd
by maximizing forward transmission and

minimizing backward transmission. This objective leads to a
poor loss landscape where the optimizers are easily stuck at
specious designs. For example, from a randomly initialized
pattern, it converges to a low contrast result by reducing the
backward transmission, even when the forward transmission is
unreasonably low. Even with a good heuristic initialization, it
converges to a sub-optimal point with unsatisfying Efwd. The
objective fails to guide the optimization to a desired space.
Hence, it is essential to reshape the loss landscape with fewer
sharp yet undesired local optima.
➋ How can we ensure a richer gradient flow? As shown
in Fig. 3, the gradient flow is weak when the optimization
objective is based solely on the power collected at the output
port, widely adopted in photonic inverse design. Drawing an
analogy to the gradient vanishing problem in neural networks,
the optimization stagnates when all neurons are dead, e.g.,
due to ReLU activations. In the case of photonic inverse
design, without careful initialization, strong local reflection and
radiation occur easily in early optimization stages, leading to
no light passing through the output monitor and thus vanishing
gradients. This, in turn, traps the optimization in sub-optimal
or unreasonable design points. We conclude that inverse design
based on sparse objective is inherently unstable from the
gradient’s perspective. To mitigate this, inspired by dense
supervision in neural network knowledge distillation [14], we
are compelled to provide dense supervision with auxiliary
objectives to ensure a richer gradient flow, equivalently
smoothing out the loss landscape, preventing the optimization
from stagnating in unsuitable patterns.
➌ How can we efficiently sample the variation distribution
for robust optimization? Monte Carlo sampling is the common
method to estimate the behavior of a distribution. As a heuristic,
hardware designers tend to use min-max sampling to sweep all
variation corners. However, as shown in Fig. 3, the exponen-
tially many variation corner cases make it unscalable for
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Fig. 2: (a) Lithography and etching during fabrication restricts manufacturable patterns in the subspace. (b) Fabrication variations
(defocusing and etching) and operation variations cause performance deviation.
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Fig. 3: Our proposed BOSON−1 framework enables efficient, robust optimization with better convergence and optimality.

this simulation-in-the-loop inverse design. To address this, it is
crucial to draw samples adaptively, ideally with linear cost, to
balance optimization efficiency and variation robustness.
➍ How to initialize the design? The discrete nature of the bi-
nary pattern design problem makes it sensitive to initialization.
A randomly initialized pattern tends to scatter lights to different
paths, which biases the converged pattern to an undesired de-
sign with many fabrication-unfriendly small structures. Besides,
this can lead to a physically unstable local resonance state
where the optimizer can hardly escape. To solve this problem,
it is most effective if a good heuristic initialization can be
found. Furthermore, it is preferred to reduce the initialization
sensitivity by having a smooth loss landscape with effective
optimization strategies to escape from local optima.

C. Fabrication-Restricted Subspace Optimization Toward
Guaranteed Manufacturability

To minimize the post-fab performance gap in conventional
methods using heuristic MFS control and a separate inverse
lithography mask correction step [3], [5], BOSON−1 enables
end-to-end inverse design with explicit fabrication and varia-
tion modeling in the optimization loop.

We adopt a Hopkins diffraction-based lithography modeling
[22] L(·) and a gradient-estimated etching modeling during
device construction before evaluating the adjoint gradient to
enable differentiable fab-aware topology optimization. This
re-parametrization trick enforces the generated pattern to be
aware of realistic smoothing and distortion from the actual

fabrication modeling, such that the optimization trajectory is
restricted to the manufacturable subspace. Compared to mask
correction, which tries to match the freely optimized pattern at
the post-processing stage, our subspace optimization method
guarantees fabricability and eliminates the performance
gap due to topology discrepancy after correction.

D. Gradient-Enhanced Subspace Adjoint Optimization Toward
Better Optimality

We solve the optimization difficulty of photonic inverse
design from three aspects: (1) improve the loss landscape
property, (2) better method to escape local optima, and (3)
better initialization.

1) Gradient-Enhanced Objective Landscape Reshaping via
Auxiliary Constraints: As discussed in Section III-B2, a sparse
objective leads to numerous local optima that hinder opti-
mization. Hence, we guide the optimization with auxiliary
constraints Fi(ϵ|λc) ≤ Ci and relax the inequality constraints
as additional penalty terms in the objective as follows,

obj = F (ϵ|λc) +
∑
i

wi · [Fi(ϵ|λc)− Ci]+, (2)

where (·)+ adds penalty only when constraints are violated. For
the isolator design as an example, we encourage forward trans-
mission higher than 80%, reflection less than 10%, backward
radiation higher than 90%, etc. At the early stage, the penalty
terms calculated on extra power monitors, as shown in Fig. 3,
provide dense supervision and enhanced gradient flow that push
the design towards a desired region. Bad and sharp local optima
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in the original loss landscape disappear in the reshaped design
space. Moreover, gradient vanishing problems when using a
small output port monitor are resolved as the added auxiliary
monitors provide rich gradients for optimization. As the penalty
terms disappear once constraints are satisfied, the optimization
is driven by the main objective, eventually converging to a high-
FoM and feasible design.

2) Subspace Local Optima Escaping via Relaxed High-
Dimensional Tunneling: The main reason that the variation-
aware optimization is easier to get stuck in the local optima
is that the optimization is restricted in a low-dimensional
fabricable subspace which is harder for the optimizer to escape
sharp local optima. Furthermore, the gradients backpropagated
through the lithography model are hurdled as the model filters
out small features, which cause gradient vanishing on small
structures. So instead of solely relying on the gradient from
projected design pattern ˜̄ρ′ = (Tt◦Eη◦Ll◦P)(θ), we add a high-
dimensional tunnel outside the fabricable subspace through
pattern ρ as shown in Fig. 4, making the optimization objective
a weighted sum of fabrication-aware and ideal term,

obj = p·ET,η,L

[∑
i

wiFi

(
ϵ̃′(θ)|λc

)]
+(1−p)·

∑
i

wiFi (ϵ(θ)|λc) .

(3)
p will gradually increase to 1 to ensure variation awareness
and guarantee fabricability. With this technique, the subspace
optimization can easily escape from the local optima.

3) Optical Path Concentrated Initialization: A well-chosen
initialization helps prevent the optimization process from get-
ting trapped in suboptimal points. In BOSON−1, rather than
randomly initializing the design parameters θ, which can lead to
undesired initial optical behavior or even significant reflection
that hinders optimization as discussed in Section III-B2, we
initialize the design region to simple yet effective geometry
with concentrated optical paths to ensure enough light passing
through monitors with strong gradients.

E. Adaptive Sampling Strategy for Efficiency and Robustness

The number of corners increases exponentially with the
number of parameters characterizing the fabrication error,
which makes the prior exhaustive sampling method unscalable
when considering multiple error sources. For example, in our
error modeling, there are 3 lithography corners, 3 temperature
corners, and 3 global etching thresholds if we consider a
simpler etching model. In total, there are 33 = 27 corners,
requiring54 simulations in one iteration. This motivates us
to adopt an adaptive sampling strategy. Besides the nominal
corner Cn, we sample 6 more corners, namely, CL, CT and
Cη in which CL represents the minimum and maximum corner
of the lithography model and use the nominal value for the

TABLE I: Main result, the FoM for bending and crossing is
the transmission efficiency, the higher the better; the FoM for
isolator is the isolation contrast, the lower the better

Benchmark Model Fwd & bwd transmission Avg FoM
Density N/A 0.916 → 0.0487

InvFabCor-M-3 N/A 0.953 → 0.7
BOSON−1 N/A 0.967Crossing

avg improvement: 60%
Density N/A 0.996 → 0.0141

InvFabCor-M-3 N/A 0.935 → 0.691
BOSON−1 N/A 0.982Bending

avg improvement: 63%
Density [0.676, 3.53e-06] → [0.0204, 0.0757] 4.89E-06 → 3.71

InvFabCor-M-3 [0.152, 2.361e-4] → [0.0228, 0.0275] 0.00156 → 0.528
BOSON−1 [0.8275, 0.0022] 0.00262Optical isolator

avg improvement: 100%
total avg improvement: 74.3%

temperature and global etching threshold η and so does the
rest two as shown in Fig. 3. Based on this axial sampling
strategy, we reduce the complexity from exponential to
linear. However, these sampled corners still cannot model
the spatially varying etching field. As such, inspired by the
robust optimization on neural network [2], [11], we sample
an additional worst corner Cworst by one-step gradient ascend
on the temperature and the weight of the etching field basis.
Combining axial corners and worst corners, we can ensure both
efficiency and robustness.

IV. EVALUATION RESULTS

A. Evaluation Setup

a) Benchmarks: We adopt three representative photonic
devices to demonstrate the effectiveness and efficiency of
BOSON−1: (1) a waveguide bending, where light is steered by
90◦; (2) a waveguide crossing, where light propagates through
intersecting waveguides without crosstalk; and (3) an optical
isolator, where light is converted from TM1 mode to TM3

mode in forward propagation with high transmission efficiency
while the backward light is isolated via radiation.

b) Objectives: The optimization objectives are transmis-
sion efficiency for the bending and the crossing Eout

Ein
. For the

optical isolator, the objective is the isolation contrast Ebwd

Efwd

where Ebwd and Efwd refer to the transmission efficiency in
backward and forward propagation.

B. Main Results

Benchmark Notations. Before presenting the results, we define
the baseline notations. ’LS’ and ’Density’ denote level set
or density-based methods for parameterizing the design, with
BOSON−1 using level set by default. ’InvFabCor’ refers to a
two-stage process: first, levelset is used to achieve a high-
performance design ρ∗, followed by mask optimization to
match the post-fabrication pattern. ’-M’ indicates MFS control
is included, while ’-#’ specifies the number of lithography cor-
ner to match. ’-eff’ signifies that the objective is transmission
efficiency, not isolation contrast used in optical isolator. The
arrow (→) in the tables shows performance transitioning from
the optimized result to the evaluated real-world performance.

To evaluate the performance of different design patterns
produced by various optimization methods, we use Monte Carlo
sampling, where lithography corners, random η fields, and
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Fig. 5: Fabrication-aware optimization trajectories of optical isolator with forward/backward transmission, radiation, and
reflection. No variation is added. (a) Proposed method (light-concentrated initialization, dense objectives). (b) Light-concentrated
initialization with contrast as the single sparse objective. (c) Random initialization with contrast as the single sparse objective.

TABLE II: Ablation study of BOSON−1

model [fwd, bwd] contrast ↓ degradation
BOSON−1 [0.8275, 0.0022] 2.62E-03 N/A

- loss landscape reshaping [0.4382, 0.0023] 5.41E-03 52%
- subspace relax [0.8066, 0.0025] 3.25E-03 19%

exhaustive sample [0.8395, 0.0113] 1.36E-02 81%
random init [0.0610, 0.0356] 7.04E-01 100%

temperature are treated as random variables. We measured the
average of 20 samples for each case under uniform distribution,
and the result is shown in Table I. In all three benchmarks,
traditional density-based inverse design produces numerically
plausible results. However, without MFS control, these designs
contain too many fine features that are non-fabricable, resulting
in poor post-fabrication performance. While inverse fabrication
correction finds high-performance designs near the fabricable
space, performance degrades sharply after projection into the
fabricable subspace, highlighting the need for direct optimiza-
tion within this subspace. In the optical isolator benchmark,
inverse fabrication correction failed to produce a viable device
due to poor initialization. In contrast, BOSON−1 achieves the
best performance across all benchmarks by directly optimizing
the fabricable subspace, using well-chosen initialization, and
applying dense supervision.

C. Ablation Study and Discussion

In the ablations study and discussion section, all the exper-
iment results are obtained on optimizing the most challenging
benchmark, the optical isolator, where various effects, such as
reflection, resonance, and radiation, are involved.

a) Ablation Study: Table II compares our method with
its variants, each lacking a key technique. Without loss land-
scape reshaping and dense supervision, contrast performance
decreases by 52%, and more critically, the forward efficiency
is severely compromised. Omitting subspace relaxation results
in a 19% reduction in contrast, replacing adaptive sampling
with exhaustive sampling leads to a dramatic 81% decrease in
contrast, and most critically if a random initialization is used,
the device becomes invalid.

b) Loss Landscape Reshaping and Dense Objectives: As
shown in Fig. 5, without loss landscape reshaping, random
initialization causes forward transmission efficiency to stagnate
due to vanishing gradients. While the backward efficiency is
low, giving a seemingly good contrast ratio, this is mainly
due to unwanted reflection. Even with better initialization, the
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Fig. 6: (a) Comparison between different sampling strategies,
Axial + worst case shows best average contrast; (b) Comparison
between different relaxation epochs and no relaxation.

TABLE III: Compare different methods for optical isolator

model Fwd & bwd transmission Avg FoM
Density [0.625, 4.14e-4]→[0.419, 0.298] 3.7e-4→0.763

Density-M [0.405, 0.275]→[0.0883, 0.737] 0.674→9.83
LS [0.0547, 0.00137]→[0.0126, 0.0339] 0.0252→2.91

LS-M [0.722, 0.00140]→[0.604, 0.400] 0.00208→0.677
InvFabCor-1 [0.0547, 0.00138]→[0.0398, 0.0163] 0.0252→0.563
InvFabCor-3 [0.0547, 0.00138]→[0.0335, 0.0162] 0.0252→0.627

InvFabCor-M-1 [0.722, 0.00150]→[0.684, 0.0201] 0.00208→0.0306
InvFabCor-M-3 [0.722, 0.00150]→[0.687, 0.0179] 0.00208→0.0271

InvFabCor-M-3-eff [0.990, 0.669]→[0.891, 0.674] 0.676→0.756
BOSON−1 [0.828, 0.0022] 0.00262

poor loss landscape results in low backward efficiency and
suboptimal forward efficiency. In contrast, reshaping the loss
landscape and using dense objectives with multiple penalties
guide the design to a high-performance solution with strong
isolation contrast and good functionality.

c) Subspace Relaxation: Figure 6(b) shows the optimized
contrast under different epochs of relaxation and the one with-
out subspace relaxation, from which it is clear that subspace
relaxation can greatly improve the contrast ratio by around 400
times. Note that the hyperparameter is searched on the nominal
corner without variation.

d) Adaptive Sampling: We evaluate exhaustive sampling
(O(3N )), single-sided axial sampling (O(N)), and axial sam-
pling (O(2N)) in Fig. 6(a). Single-sided axial performs poorly
due to its asymmetry, while axial sampling surprisingly outper-
forms exhaustive sampling by avoiding low-probability corner
cases. Without accounting for variations (Nominal-only), per-
formance drops significantly. Axial sampling with one worst-
case corner boosts performance by 6× compared to two random
samples with the same simulation cost.

e) Compare Different Methods: Table III compares dif-
ferent methods with good initialization. Our BOSON−1 outper-



forms the strongest baseline (two-stage variation-aware opti-
mization with mask correction) with one order of magnitude
better FoM, even with fabrication variations.

V. CONCLUSION

In this work, we propose BOSON−1, a photonic device
inverse design framework that addresses the manufacturing
constraints by directly optimizing the device patterns in the
fabricable subspace. Various optimization techniques have been
integrated to reshape the lass landscape and mitigate the
optimization difficulty for more efficient exploration toward
variation-robust devices. We evaluate BOSON−1 across three
photonic device inverse design tasks, demonstrating an average
performance improvement of 74.3% over prior approaches.
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