
Fuse and Mix: MACAM-Enabled Analog Activation for
Energy-Efficient Neural Acceleration

Hanqing Zhu★, Keren Zhu, Jiaqi Gu, Harrison Jin, Ray T. Chen, Jean Anne Incorvia, David Z. Pan�

ECE Department, The University of Texas at Austin, Austin, TX, USA
★hqzhu@utexas.edu; �dpan@ece.utexas.edu

ABSTRACT

Analog computing has been recognized as a promising low-power

alternative to digital counterparts for neural network acceleration.

However, conventional analog computing is mainly in a mixed-

signal manner. Tedious analog/digital (A/D) conversion cost signifi-

cantly limits the overall system’s energy efficiency. In this work, we

devise an efficient analog activation unit with magnetic tunnel junc-

tion (MTJ)-based analog content-addressable memory (MACAM),

simultaneously realizing nonlinear activation and A/D conversion

in a fused fashion. To compensate for the nascent and therefore

currently limited representation capability of MACAM, we propose

tomix our analog activation unit with digital activation dataflow. A

fully differential framework, SuperMixer, is developed to search
for an optimized activation workload assignment, adaptive to vari-

ous activation energy constraints. The effectiveness of our proposed

methods is evaluated on a silicon photonic accelerator. Compared

to standard activation implementation, our mixed activation system

with the searched assignment can achieve competitive accuracy

with >60% energy saving on A/D conversion and activation.

1 INTRODUCTION

Deep neural networks (DNNs) have received an explosion of inter-

est due to state-of-the-art inference accuracy in a myriad of artificial

intelligence tasks. In parallel, the rapidly escalating model size and

data volume raise a surging need for more efficient computing solu-

tions. However, asMoore’s lawwinds down, it becomes increasingly

challenging for conventional digital counterparts to meet the com-

putational demands of DNN workloads. A slew of new processor

architectures employing analog techniques is keenly sought to re-

duce power dissipation and improve computational speed. Crossbar-

based processing-in-memory (PIM) architectures [2, 10, 18, 19, 26]

and integrated optical neural networks (ONNs) [6, 8, 9, 20, 21, 28]

are two prominent examples in this direction.

However, analog computing is mainly in a mixed-signal manner:

digital inputs are transformed into analog signals for computation,

and then computing results are converted back to the digital domain

for the downstream operations, e.g., activation. Tedious digital/ana-

log (D/A) and analog/digital (A/D) conversion overhead exists and
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Figure 1: Power breakdown of (a) a crossbar-based CNN acceler-

ator ISAAC [19] and (b) a silicon photonic accelerator Mars [17].

WDACs means DACs for weights, and VDACs means DACs for vec-

tor inputs. In Mars, it chooses a more costly DAC configuration than

the ADC configuration, and most of the power consumption in digi-

tal part comes from data movement.

hinders the overall system energy efficiency [7, 22, 27]. Figure 1

shows two case studies of energy breakdown in two representa-

tive analog convolutional NN (CNN) accelerators, where the A/D

conversion achieved by costly analog-to-digital converters (ADCs)

counts for a significant portion of overall power consumption. The

A/D conversion overhead concern is further escalated in ONNs due

to its high-speed ADC requirements.

Based on the above analysis, we observe a solid demand for seek-

ing another efficient and low-latency alternative to costly ADCs to

bring analog signals back to the digital domain. A recently proposed

memristor-based analog content-addressable memory (ACAM) [13]

shows up to be a promising candidate with picosecond-level la-

tency and femtojoule-level energy consumption. BRAHMS [22] has

explored a RRAM-based accelerator to use ACAM to implement

nonlinear activation, pooling, and A/D conversion successively,

thus eliminating the usage of ADCs. However, the separate im-

plementation of the three operations requires routing the analog

signals back to ACAM three times, raising a signal noise concern.

Moreover, a severe accuracy drop has been seen in [22] when the

precision of A/D conversion implemented by ACAM is insufficient.

These obstacles need to be overcome before viable ACAM can be

utilized in analog computing to reduce the A/D overhead.

In this work, we devise an efficient analog activation unit based

on MTJ-based ACAM (MACAM), simultaneously implementing

nonlinear activation and A/D conversion in a fused manner. To

compensate for the limited representation capability of MACAM,

we propose a mixed activation system that integrates the proposed

low-energy analog activation and the conventional high-precision

digital activation datapaths. With a given activation energy con-

straint, a SuperMixer training flow is proposed to automatically

learn how to assign activation workloads on the mixed activation

system, aiming at balancing the expressiveness and energy cost.

Our main contributions are as follows,
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• We propose a novel analog and mixed activation system for

energy-efficient neural network acceleration.

• Wedevise a fused analog activationunit based onMACAM

that can simultaneously achieve nonlinear activation and

A/D conversion with significant energy reduction.

• We propose amixed activation system that integrates both

analog and digital activation dataflows to balance expres-

siveness and energy efficiency.

• We develop a SuperMixer framework to automatically

learn how to assign activation workloads on our mixed acti-

vation system adaptive to various energy constraints.

• A learnable nonlinearity threshold is proposed with an

enhanced training recipe to boost accuracy under limited

MACAM resolution, allowing practical application of very

nascent technologies to use their benefits and mitigate their

present challenges.

• We evaluate our methods on a photonic accelerator. Regard-

ing the energy cost of A/D conversion and activation, exper-

iment results show that using fully analog activation units

gives ∼65% energy saving, and the searched assignment on

the mixed activation system can achieve >60% energy reduc-

tion with comparable accuracy.

2 PRELIMINARIES

2.1 Analog Content-addressable Memory

Memristor-based analog content-addressable memory is recently

proposed in [13]. Fig. 2(a) shows the single ACAM cell design

that supports search in a continuous analog interval. The lower

bound (LB) and upper bound (UB) of the match interval are repre-

sented by tuning the resistance of two memristor devices, M1 and

M2. The ACAM cell can take an analog voltage as the input, which

is applied to the data line (DL). DL is connected to the gate of two

switching transistors, S1 and S2. When the input is smaller (larger)

than the LB (UB), both S1 and S2 are OFF (ON), making T1 (T2) ON.

Then the match line (ML) will be pulled down, leading to a mis-

match. If the input is within the interval, the ML will not be pulled

down, resulting in a match. The prior study [13, 22] has proved the

ACAM can achieve the search functionality with picosecond-level

latency and femtojoule-level energy consumption. We can cascade

multiple ACAM cells to form an ACAM array, where each cell rep-

resents one specific interval such that all intervals can consist of a

large search interval. The maximum search range is decided by the

minimum and maximum resistance of the memristor device. It is

obvious that the number of implementable intervals is decided by

the number of available resistances of the memristor device.

Regarding the choice of the memristor device, since the ACAM

acts as a role of memory with potential frequent access, it inher-

ently requires the chosen memristor to be long-endurance. The

magnetic tunnel junction (MTJ) turns out to be a more suitable

choice with excellent endurance (1015 cycles) compared with PCM

(107 cycles) and RRAM (105 cycles) [18]. Among MTJs, Figure 2(b)

shows a three-terminal domain wall-MTJ (DW-MTJ) implementa-

tion, which isolates the read (OUT) and write (IN) paths for even

better endurance while also providing analog resistance levels with

excellent stability of the resistance levels over numerous cycles [12].
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Figure 2: (a) Schematic of the ACAM cell [13]. (b) The adopted

three-terminal domain wall-MTJ [12].

Hence, in this paper, we choose the DW-MTJ as the memristor de-

vice of ACAM. But, this is a very new MTJ type, and currently

the number of resistance levels implemented on DW-MTJ is rather

limited, where 5 stable resistance levels are demonstrated in [12]

as the state-of-the-art (SOTA) implementation.

2.2 Related Works and Motivation

Several prior works have explored reducing the A/D conversion

overhead in PIM. In [16], building fully analog circuits is proposed

such that the signals are transmitted between layers without A/D

conversion. This fully analog manner has been proved to be accu-

racy unfriendly. PRIME [2] chooses to use sense amplifiers (SAs)

to do A/D conversion instead of ADCs. But a SA can only convert

one bit at a time, leading to a long latency to get the whole out-

put. CASCADE [5] proposes to accumulate the partial sums in the

analog domain by connecting the outputs of multiple crossbars

via an additional buffer RRAM array. However, the last-mile A/D

conversion is kept to convert the sum back to the digital domain

for downstream tasks, e.g., activation.

Typically, in analog computing, onlymatrixmultiplications (MMs)

are conducted in the analog domain, while nonlinear activation

function and pooling are implemented in the digital domain. Thus,

A/D conversion is necessary. BRAHMS [22] proposes to put all the

MMs, activation, and pooling in the analog domain, where ACAMs

implement the latter two in two stages. In this way, only those

analog values which are kept after activation and pooling need to

be converted to the digital domain. The A/D conversion is still done

by ACAMs. In this case, costly A/D conversion can be reduced by

using the efficient ACAM. However, it is prone to signal noise since

the analog signals need to be routed through ACAM three times

to do nonlinear projection, pooling, and AD conversion. Moreover,

severe accuracy drops are observed when the precision of A/D

conversion implemented by ACAM is insufficient.

Therefore, in this paper, we devise a MACAM-based analog

activation unit. It is capable of implementing nonlinear activation

and A/D conversion at one time in a fused manner. It can replace

the traditional digital activation path, i.e., costly ADCs and digital

activation units. As a result, the overhead of A/D conversions can be

reduced. Since choosing MTJ as the memristor device will raise the

precision issue as well, a slew of efforts are dedicated to improving

the expressiveness of this device type.

3 MACAM-ENABLED FUSED ANALOG
ACTIVATION UNIT

Nonlinear activation functions in analog computing are normally

implemented by digital logics or lookup tables in the digital domain.
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Figure 3: Illustration of implementing the positive part of ReLU-𝛼
and A/D conversion in a single ACAM array.

Since the computation is conducted in the analog domain, analog-

to-digital conversion overhead exists to bring analog signals to the

digital domain for activation. We denote this conventional activa-

tion implementation as electrical digital activation, which includes

the needed ADCs and the following digital logics or lookup tables.

Recently, BRAHMS [22] has explored the idea of using ReRAM-

based ACAM to implement nonlinear activation functions and A/D

conversions, benefiting from the high-speed possessing and low

power consumption of ACAM. However, the nonlinear projection

and A/D conversion are separate. The analog signals being nonlin-

early projected need to be routed back to the ACAM to do the A/D

conversion, which may suffer from signal noise. Moreover, severe

accuracy drops are observed when the precision of ACAM-based

A/D conversion is not sufficient.

In this paper, we propose to implement the nonlinear activation

function using MACAM, where nonlinear activation and A/D

conversion are simultaneously achieved by the same MACAM

array in a fused fashion. The fundamental idea here is to utilize the

analog search functionality of MACAM to digitize the analog input

signals while introducing in-situ nonlinearity. We call this fused

nonlinear activation unit an analog activation unit. In this way,

activation energy cost can be largely eliminated, as most ADCs can

be replaced by energy-efficient MACAM.

Considering the precision issue, instead of supporting general

nonlinear functions as in [22], we choose to implement the ReLU-𝛼
function. ReLU-𝛼 is widely used in quantized models that have

limited bit-widths to represent weight and activation. The ReLU-𝛼
function with a clipping threshold 𝛼 works as follows,

X̂ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, X ∈ (−∞, 0),

X, X ∈ [0, 𝛼),

𝛼, X ∈ [𝛼, +∞),

(1)

where X is the pre-activation feature map and X̂ is the final out-

put feature map. The clipping threshold 𝛼 can bound the output

of the ReLU function, therefore, a small bit-width is capable of

representing the bounded value range of feature maps.

For ReLU-𝛼 , since the input values can be either positive or neg-

ative, we need two MACAM arrays to handle positive and negative

inputs, respectively. The negative part of ReLU-𝛼 is easy to imple-

ment by generating a constant digital result ‘0’. Fig. 3 illustrates
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Figure 4: (a) Transformation behaviors of ReLU-𝛼 implemented

with MACAM. (b) Implementation of arbitrary ReLU-𝛼 by MACAM.

the implementation for the positive part of ReLU-𝛼 in a single

MACAM array. In the 𝑖-th row of the MACAM array, by tuning the

resistance of the MTJ, one MACAM cell represents an acceptance

search interval [𝑣𝑖−1, 𝑣𝑖 ) for a match. All the intervals of MACAM

cells in the top 𝑖 rows consist of a searchable range of [𝑣0, 𝑣𝑖 ). 𝑖 is
decided by the number of implementable resistances of the MTJ. To

achieve the search interval [𝑣𝑖 ,∞], we encode ∞ similar to [22] by

using a resistor with considerably larger resistance than the resis-

tance upper bound of the MTJ. It is sufficient to cover the possible

maximum voltage output from the analog engine as it cannot be

arbitrarily large. The match result of all match lines consists of a

one-hot vector. After obtaining the one-hot match result, we then

transfer it into a binarized index using a digital priority encoder

such that it can be stored at a minimized memory storage cost. The

digital priority encoder can also handle corner cases when input is

on the bounds of interval. Each binarized index represents a group

of inputs that falls into one specific interval. Similar to quantization,

we set the binarized index to correspond to one shared value, in

which we use the mid-point of the interval’s lower bound and upper

bound in our implementation. For interval [𝑣𝑖 ,∞], the correspond-

ing value is set to 𝑣𝑖 . This mapping relationship can be defined as

a codebook Q as shown in Fig. 3. Within this process, we actually

digitize the analog input signals. For example, in Fig. 3, the input

𝑥 falls into [𝑣1, 𝑣2), the one-hot match result corresponds to the

binarized index ‘1’, which is treated as 𝑣1+𝑣2
2 . Since the minimum

voltage 𝑣0 cannot be 0, the input needs to be biased to support the

search of inputs starting from 0. In the following, for simplification

of illustration, we assume 𝑣0 = 0 and 𝑣𝑖 = 𝑐 .
Now we explain how the projection of the MACAM array can

realize in-situ nonlinearity of ReLU-𝛼 . Figure 4(a) show the transfor-

mation behavior of the MACAM array. The range [0, 𝑐] is divided
into four intervals, represented by the MTJ with 5 resistance levels

using the measured data from [12]. The inputs within each interval

are treated as the same value after projection based on the Q. If we

draw the red dashed line through the interval’s midpoint, which is

labeled by the star symbol, it implements 𝑦 = 𝑥 . Actually, we can
treat this as a nonlinear quantized version of a ReLU-𝛼 function.

The MACAM array can only support a fixed searchable range

of [0, 𝑐]. In order to implement any arbitrary ReLU-𝛼 , we need to

first scale the X with 𝑐
𝛼 to fit the search range, feed the scaled

input into ACAM, and then scale it back to [0, 𝛼], as shown in

Fig 4(b). The first scaling operations before the MACAM array can

be done using OpAmps. We can use shared OpAmps at the output
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of the computation units without extra overhead [23]. The off-chip

computers can do the second scaling operation.

All in all, the behavior of MACAM-based activation can be mod-

eled as follows,

X̂ =
𝛼

𝑐
ΠQ �

𝑐X

𝛼
, 𝑐 �, (2)

whereΠQ indicates the discretized projection function of theACAM

within [0, 𝑐] following the codebook Q. �·, 𝑐� denotes clipping to

the range of [0, 𝑐].

4 MIXED ACTIVATION SYSTEM

4.1 Proposed Mixed Activation System

As the DW-MTJ can currently only demonstrate a small number of

resistance levels, the number of implementable intervals inMACAM

is restricted, further limiting the representation capability of the

MACAM-based analog activation unit. Hence, we are motivated to

provide a mixed activation system, which integrates both the fused

analog activation and the traditional digital activation datapaths.

The traditional digital activation datapath first uses high-precision

ADCs to do A/D conversion, then performs nonlinearity in dedi-

cated digital activation units. The output feature map can choose

either of the two paths for nonlinear activation and A/D conversion.

With the mixed activation system, we can jointly utilize the low-

energy analog activation datapath and the high-precision digital

datapath to balance expressiveness and energy efficiency.

Figure 5 shows the system architecture overview with the tensor

computing system and the proposed mixed activation system. We

represent the fundamental tensor computing unit as vector-dot-

product (VDP) unit, with each unit supporting the dot-product

between two length-𝑁 vectors. Multiple VDPs implement a large-

size vector product due to the limited single VDP size, generating

multiple partial sums (PS). Note that nonlinear activation is not

applied to any intermediate PS but to the final computation results,

thus applying our MACAM-based analog activation requires in-

place partial sum accumulation in the analog domain, which is

doable by partial sum summation units [5, 22, 24]. Then, the final

results are assigned to either the analog activation or the digital

activation datapath to do nonlinear activation and A/D conversion.

We elaborate a weight-stationary dataflow to meet the require-

ment of the overall system following [22]. Take a convolutional

layer as an example, where the 2-D weights𝑊 ∈ R𝐶𝑜×(𝐶𝑖𝑘
2) and

2-D output feature map X ∈ R𝐶𝑜×(𝐻
′
𝑊

′
) . The size of vector-dot-

product in its computaion is𝐶𝑖𝑘
2, which is distributed onto 	

𝐶𝑖𝑘
2

𝑁 �

VDPs. This is doable since the largest vector product in modern

ResNet and VGG models is only (512 × 3 × 3). At each cycle, we

obtain the convolution result of the whole dot-product, ensured by

in-place partial sum summation units. Fig. 6 illustrates our dataflow

on a simple filter with 2 input channels. The weights can be sta-

tionary in the VDP units to continually complete the convolutions

of adjacent sliding windows. Instead of frequently fetching inputs

from costly memory, inputs can be reused in the convolutions of

adjacent sliding windows. After obtaining the whole result, it can be

sent to the activation datapath to do A/D conversion and activation.

4.2 Fully Differentiable SuperMixer Training

Our mixed activation system provides a more costly but higher

precision digital activation datapath to compensate for the expres-

siveness due to analog activation datapath. This intuitively raises

the question, “how do we assign the activation tasks of output fea-

ture maps onto the two different activation datapaths to balance

expressiveness and energy efficiency?”

Problem Formulation. Considering the energy gap between the

two activation datapaths, our target is to assign the activation task

of each value of output feature map 𝑋 ∈ X to either of the two

activation paths with high expressiveness under a given activation

energy constraint. We define the assignment as A. In this way, the

problem can be formulated as follows,

min L
(
𝑊 ∗A ; D𝑣𝑎𝑙 )

s.t.𝑊 ∗ = argmin
𝑊

L(𝑊 A ; D𝑡𝑟𝑛),

𝐸𝑎𝑐𝑡,𝑚𝑖𝑛 ≤ 𝐸𝑎𝑐𝑡 (A) ≤ 𝐸𝑎𝑐𝑡,𝑚𝑎𝑥 ,

𝑋 𝑙 =
2∑

𝑖=1

𝑎𝑙𝑋 ,𝑖 𝑓𝑖 (𝑋
𝑙 ), 𝑋 𝑙 ∈ X𝑙 ,

2∑
𝑖=1

𝑎𝑙𝑋 ,𝑖 = 1, 𝑎𝑙𝑋 ,𝑖 = {0, 1}.

(3)

The binary selection variable 𝑎𝑋,𝑖 decides that each output fea-

ture value 𝑋 ∈ X𝑙 in the 𝑙-th layer is passed through either 𝑓1 (·)
(MACAM-based analog activation datapath) or 𝑓2 (·) (digital acti-
vation path). The selection variables consist of the assignment A,

which is our primary search target with a activation energy cost

𝐸𝑎𝑐𝑡 (A) satisfying its constraints [𝐸𝑎𝑐𝑡,𝑚𝑖𝑛, 𝐸𝑎𝑐𝑡,𝑚𝑎𝑥 ].

Search Space Specification. Considering the on-chip routing issue

and computation regularity, it is not realistic to tediously assign

individual output feature map value to different activation units.

Instead, in this work, we propose to assign the workloads in the

filter level. Concretely, take a convolutional layer 𝑙 as an example.

Suppose it contains 𝐶𝑜 filters and each filter has 𝐶𝑖 input channels

and kernel size 𝑘 , where its 2-D input X𝑙−1 ∈ R𝐶𝑖×(𝐻×𝑊 ) and 2-D

output feature X𝑙 ∈ R𝐶𝑜×(𝐻
′
×𝑊

′
) . The entire 𝑏-th output channel

of the output feature map X𝑙 is passed through either the analog

activation path 𝑓1 (·) or the electrical activation path 𝑓2 (·), decided

by a binary selection variable 𝑎𝑙
𝑏,𝑖

. The behavior is given as follows,

X̂𝑙
𝑏 =

2∑
𝑖=1

𝑎𝑙𝑏,𝑖 𝑓𝑖 (X
𝑙
𝑏 ), 𝑎

𝑙
𝑏,𝑖 ∈ {0, 1},

∑
𝑖

𝑎𝑙𝑏,𝑖 = 1. (4)

In this way, our search space is defined as the assignmentA that

assigns each channel of output feature maps to either the analog

or the electrical activation path. For layer 𝑙 , the number of total

combinations can be 2𝐶𝑜 . Thus, the total search space for a model

with 𝐿 layers is extremely large, which is O(
∏𝐿

𝑙 2
𝐶𝑙
𝑜 ).

Fully Differentiable SuperMixer Training. Considering the

enormous search space of A and its discreteness, we propose a

differentiable SuperMixer training flow as shown in Fig. 7.

In the SuperMixer training, we need to optimize weight𝑊 ,

clipping threshold 𝛼 in ReLU-𝛼 , and assignment A. It is highly

ill-conditioned to jointly optimize all those continuous and discrete

variables. Aware of this, in this work, we divide our SuperMixer
flow into two phases. The first SuperMixerWarmup phase aims

4
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at stabilizing our following search stage, where only𝑊 and 𝛼 are

optimized to obtain a good initial point. The second SuperMixer
Search phase aims at searching for the assignment A to boost the

expressiveness. It optimizes (1)𝑊 , 𝛼 and (2) A alternatively to

avoid prohibitive co-optimization difficulty. We periodically enter

the optimization of (1) and (2) with a ratio of 2:1. Moreover, during

the SuperMixer Search phase, we need to satisfy the activation

energy cost constraint, thus, an energy cost penalty LE is added

besides the original loss L. After SuperMixer training, we fix

the searched optimal assignment A𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑑 and conduct variation-

aware training to improve themodel’s robustness regarding on-chip

variations, e.g., the resistance variation of memristors in MACAM.

Now we explain how to optimize assignment A in a differen-

tiable way. As shown in Eq. (4), the selection variable 𝑎𝑙
𝑏,𝑖

is a binary

variable. Instead of searching A in such a discrete space, we relax

the optimization problem by constructing a stochastic mixed activa-

tion unit. During the inference, the activation of the 𝑏-th channel of

feature in layer 𝑙 ,X𝑙
𝑏
, is using either the analog activation path 𝑓1 (·)

or the digital activation path 𝑓2 (·) with the sampling probability of

𝑃𝜃𝑙
𝑏
(𝑓𝑏 = 𝑓𝑖 ) =

𝑒
𝜃𝑙
𝑏,𝑖

∑
𝑖 𝑒

𝜃𝑙
𝑏,𝑖

. (5)

Equivalently, the output of the stochastic mixed activation, X̂𝑙
𝑏
, can

be expressed as,

X̂𝑙
𝑏 =

2∑
𝑖=1

𝑎𝑙𝑏,𝑖 𝑓𝑖 (X
𝑙
𝑏 ), (6)

where 𝑎𝑏,𝑖 is a random variable in {0, 1} and is evaluated based on

the sampling probability in (5). Therefore, through parameterizing

the probability distribution of activation unit choices by the sam-

pling coefficient 𝜃𝑙
𝑏
, we can relax the problem as the optimization

of probability of 𝑃𝜃 . However, we cannot propagate the gradient
back through the discrete variable 𝑎𝑏,𝑖 to 𝜃𝑏,𝑖 . To sidestep this is-

sue, Gumbel-Softmax (GS) trick is adopted to relax 𝑎𝑏,𝑖 to be a

continuous varible as follows,

𝑎𝑙𝑏,𝑖 = GumbelSoftmax(𝜃𝑙𝑏,𝑖 |𝜃
l

b
) =

𝑒
(𝜃𝑙

𝑏,𝑖
+𝑔𝑙

𝑏,𝑖
)/𝜏

∑
𝑖 𝑒

(𝜃𝑙
𝑏,𝑖

+𝑔𝑙
𝑏,𝑖

)/𝜏
. (7)

𝑔𝑙
𝑙,𝑖

follows the Gumbel distribution Gumbel(0, 1) as a Gumbel noise.

A temperature parameter 𝜏 is used to control the GS function. As

𝜏 is close to 0, the Gumbel-Softmax function approximates cate-

gorical samples based on (5). A larger 𝜏 introduces randomness

to encourage exploitation of the assignment A. Therefore, during

the SuperMixer Search phase, we gradually decay 𝜏 such that

SuperMixer can automatically exploit the search space and learn

the optimal assignment to augment A the models’ expressiveness.

Activation Energy-Constrained Optimization. The assignment

A directly impacts the activation energy cost, as it defines the

mixed way of using low-precision analog activation units and high-

precision electrical activation units. Fully using analog activation

datapath results in an ADC-free system to convert computation
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results to the digital domain, while fully using electrical activation

datapath raised a serious A/D conversion cost. With the assignment

A, we can get the activation energy cost 𝐸 (A) as follows,

𝐸𝑎𝑐𝑡 (A) = #𝑎𝑐𝑡𝑎𝑛𝑙𝑔 · 𝐸𝑎𝑛𝑙𝑔 + #𝑎𝑐𝑡𝑑𝑖𝑔𝑖 · 𝐸𝑑𝑖𝑔𝑖

=
𝐿∑
𝑙

𝐶𝑜∑
𝑏

(𝑎𝑙𝑏,𝑖 · 𝐸𝑎𝑛𝑙𝑔 + 𝑎𝑙𝑏,2 · 𝐸𝑑𝑖𝑔𝑖 ) · 𝐻
′
𝑊

′
.

(8)

#𝑎𝑐𝑡𝑎𝑛𝑙𝑔 and #𝑎𝑐𝑡𝑑𝑖𝑔𝑖 denote the number of output feature maps

being passed through the analog (anlg) activation datapath and the

digital (digi) activation datapath, respectively. The 𝐸𝑎𝑛𝑙𝑔 and 𝐸𝑑𝑖𝑔𝑖
represent the energy cost of two datapaths. The former indicates

the MACAM array’s cost, and the latter contains ADC and digital

activation unit costs. As the ADC cost is far larger [19] and the dig-

ital activation unit cost is dependent on the digital part’s frequency,

we use ADC cost to represent 𝐸𝑑𝑖𝑔𝑖 during the search phase.

To honor the energy cost constraint [𝐸𝑎𝑐𝑡,𝑚𝑖𝑛, 𝐸𝑎𝑐𝑡,𝑚𝑎𝑥 ], we add

a probabilistic activation energy cost penalty term LE ,

LE =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝛽 (𝐸𝑎𝑐𝑡 (A)/(1 − 𝛾 )𝐸𝑚𝑎𝑥 ) , 𝐸𝑎𝑐𝑡 (A) > (1 − 𝛾 )𝐸𝑚𝑎𝑥 ,

−𝛽 (𝐸𝑎𝑐𝑡 (A)/(1 + 𝛾 )𝐸𝑚𝑖𝑛) , 𝐸𝑎𝑐𝑡 (A) < (1 + 𝛾 )𝐸𝑚𝑖𝑛,

0, otherwise.

(9)

We set the margin 𝛾 to 5% to tighten the constraint. Note that 𝑎𝑙
𝑏,𝑖

in Eq. (8) is differentiable guaranteed by the GS trick.

Precision-Adaptive 𝛼 Optimization. Implementing ReLU-𝛼 can

ease the issue of insufficient precision of MACAM. However, it is

not enough to address this since the SOTA MTJ can only provide

five stable resistance levels, as mentioned before. The precision

of ReLU-𝛼 implemented by ACAM is only around 2-bit. Thus, a

solution is in great need to further tolerate the precision issue.

Instead of choosing a fixed 𝛼 in Eq. (1), inspired by PACT [3], we

propose to adopt a learnable 𝛼 with an enhanced training recipe to

accommodate the low resolution of MACAM for accuracy boost. This

can be done by configuring the gain of the OpAmps [23]. In [3],

during the learning process of 𝛼 , the gradient to 𝛼 is computed by
𝜕X̂
𝜕𝛼 = Sign(X) when X ≥ 𝛼 . Activation X that is smaller than 𝛼
cannot contribute to the gradient, resulting in inaccurate gradient

estimation to 𝛼 . Instead of updating 𝛼 in the same way of [3], we

re-formulate the gradient to 𝛼 based on Eq.(2) as follows,

𝜕X̂

𝜕𝛼
=

𝜕𝛼

𝜕𝛼
·
1

𝑐
ΠQ(𝑏) �

𝑐X

𝛼
, 𝑐 � +

𝜕ΠQ(𝑏) �
𝑐X
𝛼 , 𝑐 �

𝜕 � 𝑐X𝛼 , 𝑐 �

𝜕 � 𝑐X𝛼 , 𝑐 �

𝜕𝛼
·
𝛼

𝑐

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, X ∈ (−∞, 0),

1 ·
1

𝑐
ΠQ(𝑏) �

𝑐X

𝛼
, 𝑐 � + 1 ·

−𝑐X

𝛼2
·
𝛼

𝑐
, X ∈ [0, 𝛼),

1 ·
1

𝑐
· Sign(

𝑐X

𝛼
) · 𝑐 +

𝛼

𝑐
· 0, X ∈ [𝛼, +∞),

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, X ∈ (−∞, 0),

1

𝑐
ΠQ(𝑏) �

𝑐X

𝛼
, 𝑐 � −

X

𝛼
, X ∈ [0, 𝛼),

1, X ∈ [𝛼, +∞),

(10)

where our scaling operation works as a reparameterization trick to

preserve the gradient contribution fromX ∈ [0, 𝛼). Thus, it can cor-

rect the inaccurate gradient estimation to 𝛼 , which is proved to get

a significantly larger accuracy boost than [3] in our experiments.

Activation bank Weight bank

 Photonic VDP unit

VCSEL

VCSEL

Photonic Partial Sum ( )
Summation Unit

Micro-ring Photodetctor (PD) Transimpedance Amp (TIA)

Figure 8: The adopted photonic vector-dot-product unit [24, 25]

and photonic partial sum summation unit [24].

5 CASE STUDY: PHOTONIC ACCELERATOR

We demonstrate our design principle on a photonic accelerator as a

case study. We focus on a SOTA incoherent photonic design based

on micro-ring (MR) resonators [24, 25]. Other accelerators can also

benefit from our methods. For example, we can simply replace the

ACAM design in a RRAM-based accelerator [22] with ours but own

better tolerance to signal noise and the precision of ACAM.

Fig. 8 shows the adopted photonic vector-dot-product (VDP)

engine [24, 25] and photonic in-place partial sum (PS) summa-

tion unit [24] for our system in Fig. 5. The computation of the

convolutional (CONV) layer and fully-connected (FC) layer are

unfolded to matrix multiplication, where each vector dot product

is implemented by the vector dot product (VDP) units based on

micro-ring (MR) resonators. To support two length-𝑁 vector multi-

plication within each VDP unit, the 𝑁 size vectors are decomposed

into small-sized vector chunks. Each small-sized vector dot-product

is performed using MRs in each arm of the VDP unit. In this way, a

large 𝑁 × 𝑁 vector dot product can be achieved in one unit, e.g.,

100 × 100 in [24]. Across VDP units, photonic partial summation

units are used to accumulate the partial sums from multiple VDPs.

The partial sums frommultiple VDPs are converted from the analog

domain to the photonic domain by VCSELs, multiplexed into one

single waveguide, and summed via another photodetector.

Energy Modeling of the A/D Conversion and Activation Cost.

Here, we model the energy cost of the A/D conversion and activa-

tion, 𝐸𝐴/𝐷+𝑎𝑐𝑡 based on O-HAS [14]. Our mixed activation system

provides two datapaths to do nonlinear activation and A/D conver-

sion, with an extra photonic summation unit overhead. Consider

one convolutional layer with 𝐶𝑜 filters and output feature map

X𝑙 ∈ R𝐶𝑜×(𝐻
′
×𝑊

′
) . Each filter has 𝐶𝑖 input channels and a kernel

size of 𝑘 . The energy model of 𝐸𝐴/𝐷+𝑎𝑐𝑡 can be modeled as follows,

𝐸𝐴/𝐷+𝑎𝑐𝑡 = 𝐸𝑎𝑐𝑡 (A) + 𝐸𝑠𝑢𝑚

= (𝐶𝑜,𝑎𝑛𝑙𝑔𝐸𝑎𝑛𝑙𝑔 +𝐶𝑜,𝑑𝑖𝑔𝑖 (𝐸𝑑𝑖𝑔𝑖,𝑎𝑑𝑐 + 𝐸𝑑𝑖𝑔𝑖,𝑎𝑐𝑡 ))𝐻
′
𝑊

′

+ (𝐸𝑉𝐶𝑆𝐸𝐿)𝐶𝑜𝐻
′
𝑊

′
⌈𝐶𝑖𝑘

2

𝑁

⌉
+𝐶𝑜𝐻

′
𝑊

′
𝐸𝑃𝐷 .

(11)

𝐸𝑎𝑛𝑙𝑔 denotes the energy of the analog activation datapath, 𝐸𝑑𝑖𝑔𝑖,𝑎𝑑𝑐
and 𝐸𝑑𝑖𝑔𝑖,𝑎𝑐𝑡 denote the A/D conversion and activation energy of

the digital activation datapth. 𝐸𝑉𝐶𝑆𝐸𝐿 and 𝐸𝑃𝐷 denote the energy

for VCSEL and photodetector in the photonic PS summation unit.

In conventional implementation, the A/D conversion is done

right after obtaining partial sum and the digital activation datapath
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Table 1: 6-bit ADC configurations considered in this paper.

ADC-1 [4] ADC-2 [1]

Bit-width 6 6

Sampling rate (GS/s) 1 6

Power (mW) 1.26 14

Latency (ns) 8 1.33

is fully used. The energy cost can be modeled as,

𝐸𝐴/𝐷+𝑎𝑐𝑡 = 𝐸𝑎𝑐𝑡 + 𝐸𝐴/𝐷

= 𝐶𝑜𝐻
′
𝑊

′
(𝐸𝑑𝑖𝑔𝑖,𝑎𝑐𝑡 )

+ (𝐸𝐴𝐷𝐶 + 𝐸𝑆+𝐴 + 𝐸𝑃𝐷 )𝐶𝑜𝐻
′
𝑊

′
⌈𝐶𝑖𝑘

2

𝑁

⌉
.

(12)

6 EXPERIMENTAL RESULTS

6.1 Experiment Setup

Models and Datasets. We evaluate our methods on two modern

CNNs (VGG13 and ResNet18) and CIFAR100 [11], with 6-bit weight

precision. In VGG13, we replace the last three FC layers with one

to avoid over-fitting. In ResNet18, we move the residual path after

activation such that no extra addition is needed before activation.

Training Settings. In SuperMixer training flow, we train for 90

epochs using an SGD optimizer with an initial learning rate (lr) of

0.02, a momentum of 0.9, and a cosine lr scheduler. The Gumbel-

softmax temperature 𝜏 exponentially decreases from 5 to 0.5.𝛾 is set

to 0.6 for the activation energy cost penalty. The initial𝛼 of the adap-

tive ReLU-𝛼 is set to 8. We set 10 epochs for SuperMixerWarmup

phase and 80 epochs for search phase. We sample an assignment

A from the learned distribution 𝑃𝜃 , then enter the variation-aware

training. We train all models for 200 epochs during variation-aware

retraining using an SGD optimizer with an initial learning rate (lr)

of 0.02, a momentum of 0.9, and a cosine lr scheduler.

MACAM and ADC Designs. We consider two MACAM designs

with two MTJ devices in this paper. MACAM-1 uses the DW-MTJ

with 5 resistance levels with around 2-bit precision. MACAM-2 uses

the DW-MTJ with 3 resistance levels with around 1-bit precision.

We choose two 6-bit ADC designs shown in Table. 1.

Noise Injection. We set the variation of MRs following a Gaussian

distribution N(0, 0.052). For MACAM, we set the MTJ resistance

device-to-device variation as N(0, 0.1282) [15], run Monte Carlo

simulation 104 times to capture the noisy distribution of MACAM’s

intervals, and equivalently add it to the input following [22].

A/D and Activation Energy Simulation. The performance and

power dissipation of MACAM are evaluated with Cadence ADE and

spectre simulations. We estimate the A/D conversion and activation

energy by Eq. (11) based on O-HAS [14]. The size of VDP is set as

128. Since the final FC layer is the output layer without activation,

for a fair comparison, we don’t include its energy consumption.

6.2 Main Results

Evaluation of Our Precision-adaptive ReLU-𝛼 . In Table 2, we

validate the expressiveness of our proposed precision-adaptive

ReLU-𝛼 on VGG13. We compare it with the adaptive ReLU-𝛼 in

PACT [3] and the ReLU-𝛼 with a fixed 𝛼 . For the ReLU-𝛼 with fixed

𝛼 , the commonly used ReLU6 is adopted, while ReLU2 is adopted

Table 2: Compare different ReLU variants on CIFAR100. 2+ and 1+

represents the precision of ACAM-1 and ACAM-2, respectively.

Model Weight bit Act. bit ReLU Accuracy (%)

32 32 ReLU 74.76

6 6 ReLU6 71.31

6 6 ReLU-𝛼-PACT [3] 73.80

6 6 ReLU-𝛼-Ours 73.91

6 2+ ReLU6 68.17

6 2+ ReLU-𝛼-PACT [3] 70.96

6 2+ ReLU-𝛼-Ours 72.52

6 1+ ReLU2 54.98

6 1+ ReLU-𝛼-PACT [3] 67.11

VGG13

6 1+ ReLU-𝛼-Ours 70.84

in the extremely low activation bit-width. Under 6-bit weight bit-

width, our implementation achieves the highest accuracy, especially

on low activation bit-width cases. This attributes to our proposed

precision-adaptive 𝛼 optimization scheme, which learns the 𝛼 to

accommodate the low resolution. Compared to PACT [3], our en-

hanced training recipe can correct its inaccurate gradient, resulting

in a better accuracy boost. Hence, our adaptive ReLU-𝛼 can address

the accuracy drop issue in [22] due to the low activation bit-width.

It is essential to boost the expressiveness of the analog activation

unit so as to achieve competitive model accuracy.

Evaluation of Our SuperMixer. We search the assignment A

with the proposed SuperMixer flow on different MACAM de-

signs, ADC designs, and activation energy constraints. We denote

searched assignments as searchedA0 to searchedA3. Table 3 and 4

show the test accuracy of searched assignments on VGG13 and

ResNet18. Our searched assignment series show improved expres-

siveness in terms of accuracy with constrained activation energy

cost. Especially, given a large activation energy cost budget on

MACAM-1, our SuperMixer can find an assignment with com-

parable accuracy to the case fully using high-precision digital acti-

vation. In conclusion, our SuperMixer flow successfully utilizes

the provided mixed activation system to boost the expressiveness.

Energy Saving on AD Conversion and Activation.We simulate

the energy cost of A/D conversion and activation cost on VGG13.

Configurations of ADC-1 and ACAM-1 are adopted. The conven-

tional implementation of using ADCs for A/D conversion of partial

sums and using digital activation datapath consumes 35.7 𝜇J. With

photonic summation units to eliminate A/D conversion needs of

partial sums, fully using digital activation datapath consumes 17.24

𝜇J with a 51.7% reduction, and fully using analog activation datapath

uses 12.44 𝜇J with a 65.2% reduction. Our SuperMixer enables

the mixed use of electrical and analog activation with a trade-off

between energy cost and expressiveness, where the searched-A3

consumes 14.2𝜇J with 60.2% reduction but comparable accuracy.

Searched Layer-wise AssignmentA.We further validate the suc-

cess of SuperMixer to learn a good assignment A for boosting

expressiveness. Fig. 9(a) and Fig. 9(b) visualize the ratio of feature

map channels being assigned to digital activation path in each layer

of VGG13 and ResNet18. Under different activation energy cost

constraints, SuperMixer learns a similar tendency to assign the

workloads. In former layers, the size of each channel of the feature

map is larger, thus fewer channels are assigned to the electrical acti-

vation units to avoid violation of the energy constraint. In contrast,
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Table 3: Test Accuracy of searched VGG13 on different ADC and MACAM designs, where the model is searched on CIFAR100. All activation

energy cost is normalized by the activation energy of fully using digital activation datapath.

Model MACAM design ADC design Metrics Fully digital Fully analog Searched-A0 Searched-A1 Searched-A2 Searched-A3

VGG13

MACAM-1

ADC-1

[𝐸𝑎𝑐𝑡,𝑚𝑖𝑛 , 𝐸𝑎𝑐𝑡,𝑚𝑎𝑥 ] - - [0.05, 0.15] [0.15, 0.25] [0.25, 0.35] [0.35, 0.45]

Activation energy 𝐸𝑎𝑐𝑡 (A) 1 0.00036 0.11 0.19 0.28 0.39

Accuracy (%) 73.91 72.52 72.94 72.73 73.09 73.30

ADC-2

[𝐸𝑎𝑐𝑡,𝑚𝑖𝑛 , 𝐸𝑎𝑐𝑡,𝑚𝑎𝑥 ] - - [0.09, 0.14] [0.14, 0.19] [0.19, 0.24] [0.24, 0.30]

Activation energy 𝐸𝑎𝑐𝑡 (A) 0.54 0.00036 0.10 0.15 0.21 0.24

Accuracy (%) 73.91 72.52 72.58 72.86 73.24 73.54

MACAM-2

ADC-1

[𝐸𝑎𝑐𝑡,𝑚𝑖𝑛 , 𝐸𝑎𝑐𝑡,𝑚𝑎𝑥 ] - - [0.05, 0.15] [0.15, 0.25] [0.25, 0.35] [0.35, 0.45]

Activation energy 𝐸𝑎𝑐𝑡 (A) 1 0.00022 0.12 0.19 0.27 0.39

Accuracy (%) 73.91 70.84 71.50 72.07 72.13 72.50

ADC-2

[𝐸𝑎𝑐𝑡,𝑚𝑖𝑛 , 𝐸𝑎𝑐𝑡,𝑚𝑎𝑥 ] - - [0.09, 0.14] [0.14, 0.19] [0.19, 0.24] [0.24, 0.30]

Activation energy 𝐸𝑎𝑐𝑡 (A) 0.54 0.00022 0.10 0.16 0.21 0.26

Accuracy (%) 73.91 70.84 71.50 71.76 72.42 73.02

Table 4: Test Accuracy of searched ResNet18 on CIFAR100 with MACAM-1 and two different ADC designs.

Model MACAM design ADC design Metrics Fully digital Fully analog Searched-A0 Searched-A1 Searched-A2 Searched-A3

ResNet18 MACAM-1

ADC-1

[𝐸𝑎𝑐𝑡,𝑚𝑖𝑛 , 𝐸𝑎𝑐𝑡,𝑚𝑎𝑥 ] - - [0.05, 0.15] [0.15, 0.25] [0.25, 0.35] [0.35, 0.45]

Activation energy 𝐸𝑎𝑐𝑡 (A) 1 0.00036 0.12 0.20 0.29 0.41

Accuracy (%) 77.63 76.41 77.01 77.18 77.35 77.47

ADC-2

[𝐸𝑎𝑐𝑡,𝑚𝑖𝑛 , 𝐸𝑎𝑐𝑡,𝑚𝑎𝑥 ] - - [0.09, 0.14] [0.14, 0.19] [0.19, 0.24] [0.24, 0.30]

Activation energy 𝐸𝑎𝑐𝑡 (A) 0.54 0.00036 0.11 0.16 0.21 0.27

Accuracy (%) 77.63 76.41 76.85 77.06 77.14 77.40
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Figure 9: The layer-wise ratio of channels assigned to the digital

activation units (digi) on searched models. (a) VGG13 with MACAM-

2 and ADC-2. (b) ResNet18 with MACAM-1 and ADC-1.

more channels are assigned to the electrical activation units in the

latter layers to boost the model accuracy. This demonstrates our

SuperMixer flow can automatically learn the optimized assign-

ment with boosted expressiveness under energy constraints.

EnergyPenaltyCurve. In Fig. 10(a), the activation energy𝐸𝑎𝑐𝑡 (A)

is visualized along the SuperMixer training process. 𝐸𝑎𝑐𝑡 (A)

is well-bounded in the given constraint. It continues the exploita-

tion of the search space and converges with the temperate 𝜏 of the

Gumbel Softmax approaching 0.

Noise Robustness of Searched Models. In Fig. 10(b), we evaluate

the variation-robustness between searched models and model us-

ing fully analog activation units. With the increasing variation on

MACAM, our searched models show better noise robustness since

of the involvement of electrical activation units.

7 CONCLUSION

In this work, we propose a novel analog and mixed activation

system for energy-efficient neural network acceleration. We first

devise a fused analog activation unit based on MACAM that is

capable of achieving nonlinear ReLU-𝛼 and A/D conversion simul-

taneously, with superior energy efficiency to conventional digital

activation implementation. We further integrate both the analog
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Figure 10: (a) Training curve of activation energy cost 𝐸𝑎𝑐𝑡 (A) of

A2. (b) Robustness evaluation of Fully analog, A0, and A3· Error

bars show the ±1 · 𝜎 variance over 20 runs. All models are VGG13 on

CIFAR100 with MACAM-1 and ADC-1.

and digital activation dataflows to create a mixed activation sys-

tem. A SuperMixer training flow is developed to automatically

learn how to assign activation workloads to the low-energy analog

activation datapath and high-precision digital activation datapath,

aiming at a balance of expressiveness and energy efficiency. Our pro-

posed methods are evaluated in a silicon photonic accelerator case

study. Compared to the standard activation implementation, our

mixed activation system with the searched assignment can achieve

competitive accuracy with >60% energy saving on the overall A/D

conversion and activation energy cost. Our MACAM-enabled ana-

log and mixed activation system is viable to break through the curse

of A/D conversion overhead in analog computing.
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