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ABSTRACT
Photonic computing has emerged as a promising solution for accel-
erating computation-intensive artificial intelligence (AI) workloads.
However, limited reconfigurability, high electrical-optical conversion
cost, and thermal sensitivity limit the deployment of current optical
analog computing engines to support power-restricted, performance-
sensitive AI workloads at scale. Sparsity provides a great opportunity
for hardware-efficient AI accelerators. However, current dense pho-
tonic accelerators fail to fully exploit the power-saving potential of
algorithmic sparsity. It requires sparsity-aware hardware specializa-
tion with a fundamental re-design of photonic tensor core topology
and cross-layer device-circuit-architecture-algorithm co-optimization
aware of hardware non-ideality and power bottleneck. To trim down
the redundant power consumption while maximizing robustness to
thermal variations, we propose SCATTER, a novel algorithm-circuit co-
sparse photonic accelerator featuring dynamically reconfigurable sig-
nal path via thermal-tolerant, power-efficient in-situ light redistribu-
tion and power gating. A power-optimized, crosstalk-aware dynamic
sparse training framework is introduced to explore row-column struc-
tured sparsity and ensure marginal accuracy loss andmaximum power
efficiency. The extensive evaluation shows that our cross-stacked opti-
mized accelerator SCATTER achieves a 511× area reduction and 12.4×
power saving with superior crosstalk tolerance that enables unprece-
dented circuit layout compactness and on-chip power efficiency. Our
code is open sourced at link.

1 INTRODUCTION
The quest for efficient and high-performance artificial intelligence
(AI) solutions has propelled the development of photonic comput-
ing. By harnessing the unique properties of light, photonic acceler-
ators offer unmatched speed and energy efficiency, particularly for
resource-constrained AI applications [3, 6, 7, 19–21, 23, 24, 30]. Pho-
tonic tensor cores (PTCs) are the fundamental building blocks of these
optical AI accelerators, and various designs have been demonstrated
for matrix-vector multiplication or convolution using either coherent
interference [7, 20, 24, 29, 30] or incoherent intensity modulation with
multi-wavelength accumulation [6, 21, 23].

Despite the ultra-fast speed and high throughput, the widespread
adoption of photonic accelerators is hampered by several critical
challenges: thermal robustness, non-trivial power bottleneck from sig-
nal conversion between electrical and optical domains, and hardware
reconfigurability [11, 18, 26, 28, 29, 31]. ➊ Thermal Variation Ro-
bustness. Thermo-optic devices, chosen for their compactness and
low insertion loss, are used for phase/magnitude modulation but are
prone to thermal crosstalk, which significantly degrades computa-
tional accuracy. Solutions often compromise chip density, require
noise modeling [11, 18, 31], or rely on on-chip calibration [10, 12, 16],
which induces hardware overhead and specific to individual chips.
A more general, thermal variation-tolerant architecture supporting
standard model compression is needed. ➋ E-O/A-D Conversion
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Figure 1: Our proposed SCATTER architecture co-explores cir-
cuit/algorithm sparsity with power efficiency and robustness
co-optimization compared to generic dense tensor cores.

Power. In electronic-photonic heterogeneous accelerators, signal con-
version between optical and electrical domains is a significant power
bottleneck [19, 29, 32]. High-speed, high-resolution digital-to-analog
converters (DACs) and analog-to-digital converters (ADCs) dominate
on-chip power and area. Researchers have tried reducing power by
lowering sampling frequency (<1 GHz) and bit resolutions (<4-bit)
with minimal accuracy loss [11, 26, 32]. However, achieving a balance
between resolution, speed, and low power/area cost remains challeng-
ing. ➌ Reconfigurability. Reprogrammability is crucial for versatile
photonic accelerators. Current PTC designs are specialized for dense
MVM with fixed circuit topologies, lacking flexibility to exploit spar-
sity in modern AI models. An efficient co-sparse architecture should
optimize more than just setting weights to zero. A reconfigurable PTC
that adaptively reroutes and gates its signal path to support algorith-
mic sparsity would significantly enhance flexibility and efficiency.

To address these fundamental roadblocks, for the first time, we
present a dynamically reconfigurable photonic accelerator SCATTER
that features native support for algorithm/hardware co-sparsity with
cross-layer power/thermal robustness co-optimization.➊To boost the
thermal variation robustness, we optimize device spacing, exploit cir-
cuit sparsity, and employ in-situ power gating to minimize crosstalk.
➋ To boost power efficiency, we explore power-optimized photonic
devices, hybrid electrical-optical DAC designs, and architectural hard-
ware sharing. Our power-aware dynamic sparse training framework
explicitly targets power minimization during sparsity exploration.
➌ To enable flexible hardware reconfiguration, we introduce an on-
chip tunable light rerouter to dynamically redistribute the optical
power to efficiently support structured row-column weight sparsity
that directly translates to power reduction and noise suppression.

The major contributions of this paper are as follows:
• In-situ Light Redistribution – For the first time, we introduce
in-situ light redistribution mechanism for reconfigurable pho-
tonic tensor cores, achieving power-optimized, thermal-robust
algorithm-circuit co-sparsity. We dynamically reroute light power
to focus on critical computations and suppress variation-induced
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errors from pruned components, enhancing efficiency and signal-
to-noise ratio.
• Dynamic Reconfigurable Architecture –We introduce on-chip

optical rerouter input/output power gating to enable fine-grained
signal path control as a native primitive for circuit sparsity, achiev-
ing superior efficiency for multi-core photonic AI accelerators.
• Cross-layer Power/Area Minimization – We integrate power-

optimized photonic devices, hybrid electrical-optical DAC designs,
dynamic power-gated input/readout circuitry, and automated ar-
chitecture exploration, realizing 511× area reduction and 12.4×
power saving compared to dense designs built on foundry devices.
• Power-Robustness Co-Optimized Sparsity – Our one-shot,

hardware-aware dynamic sparse training learns structured weight
sparsity masks while optimizing accuracy, power efficiency, and
thermal crosstalk tolerance.

2 BACKGROUND
2.1 Dense/Sparse Optical Neural Networks
Various photonic neural network designs encode inputs and weights
to light magnitude/phase and circuit transmission, performing ultra-
fast matrix multiplication [3, 6, 7, 7, 19–21, 23, 24, 29, 30]. However,
most prior work focuses on dense photonic tensor cores (PTCs) with
fixed topologies, limiting compatibility with the algorithmic sparsity
in modern AI models. Some pruning techniques for optical neural
networks have shown power reduction by pruning phase shifters in
MZI arrays [1, 8, 9], but they fail to fully leverage structured sparsity.
The challenge remains to dynamically reconfigure circuit connectivity
and signal paths for co-exploration of algorithmic and circuit sparsity,
optimizing power and robustness.

2.2 Structured Sparsity and Dynamic Sparse
Training

Modern neural networks often exhibit intrinsic sparsity, offering op-
portunities for memory and computational savings through prun-
ing [4, 22, 25, 27]. Unlike unstructured sparsity with arbitrary zero
entries in the matrix, structured sparsity, where clusters of elements
are pruned in hardware-aware patterns, is particularly advantageous
for efficient implementation [4, 17, 22].

To automate structured sparsity exploration while minimizing accu-
racy loss, we adopt state-of-the-art dynamic sparse training (DST) [2,
14, 15]. Unlike traditional approaches that first train a dense model,
DSTmaintains a sparsemodel throughout training, iteratively pruning
and regrowing connections. This one-shot approach streamlines the
neural architecture search process.Wewill develop our power/robustness
sparsity optimization based on the flexible DST framework.

3 PROPOSED CO-SPARSE PHOTONIC
ACCELERATOR SCATTER

We introduce SCATTER, a multi-core dynamic photonic accelerator,
shown in Fig. 2. SCATTER is designed to overcome the limitations of
traditional photonic accelerators with these key features: ➊ phase-
agnostic incoherent photonic tensor cores for robust tensor comput-
ing; ➋ shared input modulation modules and readout circuitry to
balance area, power, and control flexibility; ➌ in-situ tunable rerouter
for light redistribution; ➍ hardware gating to support structured row-
column sparsity with enhanced power efficiency and thermal crosstalk
robustness.; ➎ co-optimized devices, circuits, and architecture config-
urations with maximum efficiency and thermal variation tolerance.
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Figure 2: Dynamic multi-core photonic accelerator architecture
with 𝑅 tiles and𝐶 PTCs per tile. Each PTC is of size 𝑘1×𝑘2. Input
modulation modules are shared by 𝑟 PTCs across different tiles.
Readout circuitry is shared by 𝑐 PTCs in a tile.

Photonic Tensor Core ( )
Optical Matrix-Vector Multiplication 

1x2 MZI (Power Splitter)

PD

PD

Weight encoding 

1 k1 splitter

PS

PS

Phase-agnostic
full-range weights

in-situ photocurrent
summation

length-
input vectors

length-
output
vectors

Figure 3: Schematic of phase-agnostic incoherent PTC.

In this section, we will detail the core innovations of SCATTER’s hard-
ware/algorithm co-sparse design and our comprehensive cross-layer
co-optimization methodology.

3.1 Accelerator Architecture Overview
3.1.1 Phase-Insensitive Differential Photonic Tensor Cores. To avoid
the phase instability issue of coherent PTCs, e.g., unitaryMZImesh [20],
and dynamic crossbar arrays [29], and thermal sensitivity issue of
narrow-band resonance-based PTCs, e.g., MRR weight banks [21], we
introduce a phase-agnostic full-range PTC architecture. This archi-
tecture forms the foundation of our sparsity optimization techniques.
Figure 3 illustrates a 𝑘1 × 𝑘2 PTC. The length-𝑘2 input vector 𝑥 is
encoded as light intensity and broadcast to 𝑘1 columns via 1×𝑘1 even
splitter. Each crossbar node is a full-range multiplication engine con-
sisting of a 1×2MZI power splitter and balanced photodetectors (BPD).



Partial products are accumulated along each column through pho-
tocurrent aggregation. Formally, the tensor core operation is

𝑦 =𝑊𝑥 ; 𝑦𝑖 =
∑︁
𝑗

𝑊𝑖 𝑗𝑥 𝑗 ;(
𝐸𝑜𝑢𝑡1
𝐸𝑜𝑢𝑡2

)
=

√
2
2

(
1 𝑗

𝑗 1

) (
𝑒− 𝑗Δ𝜙 0

0 1

) (√
2/2√
2/2

)
𝑥

𝑊𝑖 𝑗𝑥 = |𝐸𝑜𝑢𝑡1 |2 − |𝐸𝑜𝑢𝑡2 |2 =
(
2 cos2

(Δ𝜙 + 𝜙𝑏
2

)
− 1

)
𝑥,

(1)

where Δ𝜙 ∈ [−𝜋2 ,
𝜋
2 ] is the MZI arm phase difference. The default

phase bias 𝜙𝑏 is 𝜋2 . Differential outputs from the power splitter and
BPDs enable full-range weight representation. For input vectors, since
they are quantized within a certain range, we can adopt non-negative
isomorphic transformation before deployment to guarantee positive-
only input 𝑥 with a certain bias [13]. The weight matrices and input
vectors are normalized to ensure they are implementable by the modu-
lation coefficient and light intensity, and the output results are scaled
back with the normalization factor. Note that neither phase coherence
nor thermal feedback, like in MZI and MRR arrays, is needed due to
intensity encoding and broadband non-resonance devices.

3.2 Power, Area, and Robustness Analysis
We present a thorough power analysis of photonic computing en-
gines, which will guide our optimization strategies. We assume the
multi-core architecture has 𝑅 tiles and 𝐶 cores per tile, operating at
frequency 𝑓 . The input modulation module is shared across 𝑟 PTCs
across different tiles, and the readout circuitry is shared across 𝑐 cores
within a tile.

3.2.1 On-chip Power Modeling. We break down the key contributors
to on-chip power consumption:

For input modulation, high-speed 𝑏𝑖𝑛-bit DACs consume a large
amount of power. The input modulation power is estimated as

𝑃𝑖𝑛 =
𝑅𝐶𝑘2
𝑟
(𝑃𝑚𝑜𝑑 + 𝑃𝑒𝐷𝐴𝐶 (𝑏𝑖𝑛, 𝑓 ) ),

𝑃𝑚𝑜𝑑 = 𝑃𝑚𝑜𝑑,𝑠𝑡𝑎𝑡𝑖𝑐 + 𝐸𝑚𝑜𝑑 𝑓 , 𝑃𝑒𝐷𝐴𝐶 (𝑏𝑖𝑛, 𝑓 ) = 𝑃0,𝑒𝐷𝐴𝐶
2𝑏𝑖𝑛
𝑏𝑖𝑛 + 1

𝑓 ,

(2)

where 𝑃𝑚𝑜𝑑,𝑠𝑡𝑎𝑡𝑖𝑐 is the static power of the MZM, 𝐸𝑚𝑜𝑑 is the dynamic
energy per full-rangemodulation (J/bit), 𝑃0,𝑒𝐷𝐴𝐶 is the reported eDAC
power working at its designed sampling rate and precision. Note that
the eDAC power scales linearly with frequency 𝑓 and exponentially
with resolution 𝑏𝑖𝑛 . Reducing the eDAC power is crucial for system
energy efficiency.

For weight encoding, phase shifters in MZI splitters, low-speed
(𝑓𝑤 ≪ 𝑓 ) 𝑏𝑤-bit weight DACs, and BPDs contribute to the weight
encoding power:

𝑃𝑤𝑔𝑡 = 𝑅𝐶𝑘1𝑘2
(
𝑃𝑀𝑍𝐼 + 2𝑃𝑃𝐷

)
, 𝑃

𝑖 𝑗

𝑃𝑆
= P( |Δ𝜙 |, 𝑙𝑠 ), (3)

where the MZI static power dominates. This power is a function of the
absolute phase difference |Δ𝜙 | = |Δ𝜙𝑢𝑝 − Δ𝜙𝑙𝑜 | and MZI arm spacing
𝑙𝑠 . The simulated power function P(·) is shown in Fig. 4(c).

The readout circuitry also consumes significant power, especially
for the high-speed ADCs. The total readout power is,

𝑃𝑜𝑢𝑡 =
𝑅𝐶𝑘1
𝑐

(
𝑃𝑇 𝐼𝐴 + 𝑃𝐴𝐷𝐶 (𝑏𝑜 , 𝑓 )

)
, 𝑃𝐴𝐷𝐶 (𝑏𝑜 , 𝑓 ) = 𝑃0,𝐴𝐷𝐶 · 𝑏𝑜 𝑓 , (4)

where the ADC power dominates the readout power, which scales
linearly with output precision and sampling frequency. Hence, the
total on-chip power is 𝑃 = 𝑃𝑖𝑛 + 𝑃𝑤𝑔𝑡 + 𝑃𝑜𝑢𝑡 . Note that off-chip laser
and low-speed weight DACs are not included in this model.
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3.2.2 Area Modeling. Each crossbar node area is

𝐴𝑛𝑜𝑑𝑒 = (𝑙𝑠 + 𝑤𝑃𝑆 ) × (𝑙𝑌 + 𝑙𝑃𝑆 + 𝑙𝐷𝐶 ), (5)

based on our designed phase shifter and layout, (𝑙𝑌 + 𝑙𝑃𝑆 + 𝑙𝐷𝐶 ) =
115𝜇𝑚 and𝑤𝑃𝑆 = 6𝜇𝑚. The 𝑘1 × 𝑘2 array area is

𝐴𝑃𝑇𝐶,𝑤𝑔𝑡 =
(
(𝑘2 − 1)𝑙𝑣 + 𝑙𝑌 + 𝑙𝑃𝑆 + 𝑙𝐷𝐶

)
×
(
(𝑘1 − 1)𝑙ℎ + 𝑙𝑠 + 𝑤𝑃𝑆

)
. (6)

Considering the multi-core architecture with an input modulation
sharing factor 𝑟 and readout sharing factor 𝑐 , the total on-chip area is
estimated as
𝐴 = 𝑅𝐶 (𝐴𝑃𝑇𝐶,𝑤𝑔𝑡 + 𝑘2𝐴𝑀𝑀𝐼 + 2𝑘1𝑘2𝐴𝑃𝐷 )

+ 𝑅𝐶
𝑟
(𝑘2𝐴𝐷𝐴𝐶 + 𝑘2𝐴𝑀𝑍𝑀 +𝐴𝑟𝑒𝑟𝑜𝑢𝑡𝑒𝑟 ) +

𝑅𝐶

𝑐
(𝑘1𝐴𝐴𝐷𝐶 + 𝑘1𝐴𝑇 𝐼𝐴 ),

(7)

where the PD arrays are placed in separate regions to avoid thermal
noises, 𝐴𝑀𝑀𝐼 is the 1×𝑘1 MMI splitter, 𝐴𝑟𝑒𝑟𝑜𝑢𝑡𝑒𝑟 is the area corre-
sponding to the compact folded layout shown in Fig. 5. Note that laser
and weight DACs are off-chip and are not included here.

3.2.3 Thermal Crosstalk Modeling. Thermo-optic MZI power splitters
experience intra-MZI and inter-MZI thermal crosstalk, which leads to
power penalty and accuracy degradation. In a 𝑘2-row and 𝑘1-column
PTC, we model the impact from other MZIs to the 𝑖-th MZI as follows,

Δ𝜙𝑖 = Δ𝜙𝑖 +
𝑘1𝑘2∑︁
𝑗≠𝑖

Δ𝛾𝑖 𝑗 |Δ𝜙 𝑗 | = Δ𝜙𝑖 +
𝑘1𝑘2∑︁
𝑗≠𝑖

(
𝛾𝑖 𝑗 (𝑑𝑢𝑝𝑖 𝑗 ) − 𝛾𝑖 𝑗 (𝑑

𝑙𝑜
𝑖 𝑗 )

)
|Δ𝜙 𝑗 |, (8)

where Δ𝜙𝑖 is the target phase shift, and Δ𝛾𝑖 𝑗 is the crosstalk coefficient
between the 𝑖-th and 𝑗-th MZIs. This coefficient accounts for the
differential working mode and depends on the distance between the
aggressor and victim phase shifters. 𝛾𝑖 𝑗 is a function of center distance
𝑑𝑖 𝑗 between the aggressor phase shifter in the 𝑗-th MZI and the victim
phase shifter in the 𝑖-th MZI. 𝑑𝑢𝑝

𝑖 𝑗
and 𝑑𝑙𝑜

𝑖 𝑗
represent the distance w.r.t

the upper and lower arm of the victim MZI, respectively.
This distance is calculated dynamically based on the sign of the

aggressor’s phase shift Δ𝜙 𝑗 . It will heat up the upper arm to realize a
positive Δ𝜙 ∈ [0, 𝜋/2] and heat up the lower arm to create a negative



Δ𝜙 ∈ [0,−𝜋/2]. We formulate the phase-dependent distance as

𝑑
𝑢𝑝

𝑖 𝑗
=

√︃
[ (𝑅 ( 𝑗 ) − 𝑅 (𝑖 ) )𝑙𝑣 ]2 + [ (𝐶 ( 𝑗 ) − 𝐶 (𝑖 ) )ℎ − 𝑙𝑠 IΔ𝜙 𝑗<0 ]2,

𝑑𝑙𝑜𝑖 𝑗 =

√︃
[ (𝑅 ( 𝑗 ) − 𝑅 (𝑖 ) )𝑙𝑣 ]2 + [ (𝐶 ( 𝑗 ) − 𝐶 (𝑖 ) )ℎ + 𝑙𝑠 IΔ𝜙 𝑗 ≥0 ]2,

(9)

where the indicator function IΔ𝜙 𝑗<0 is 1 with negative Δ𝜙 𝑗 , and 𝐶 (·)
and 𝑅(·) are the column and row index of 𝑗-th MZI.

We use Lumerical HEAT and MODE simulations to characterize
the relationship between 𝛾 and 𝑑 , shown in Fig. 4(a). Thermal profiles
were imported into MODE to determine the effective indices and Δ𝜙
of the upper and lower arms based on the thermo-optic coefficient
of silicon. With the same spacing, the crosstalk factor 𝛾 ∝ Δ𝜙𝑖

Δ𝜙 𝑗
is

constant, which indicates that 𝛾 is only a function of spacing. The
crosstalk coefficient decays exponentially with increasing distance.We
fit this relationship with a piecewise function (5th-order polynomial
and exponential function),

𝛾 (𝑑 ) = (
5∑︁

𝑖=0
𝑝𝑖𝑑

𝑖 )I𝑑<23 + 𝑎0𝑒−𝑎1𝑑 I𝑑≥23, (10)

where the coefficients are [𝑝0, · · · , 𝑝5]=[1,-1.76e-1,9.9e-3,-8.30e-6,-1.56e-
5,3.55e-7], [𝑎𝑜 , 𝑎1]=[0.217, 0.127]. The curve fitting fidelity 𝑅2 are 0.999
for the polynomial part and 0.998 for the exponential part.

3.3 Power, Area, and Robustness Co-Optimization
We introduce synergistic optimization approaches across device, cir-
cuit, architecture, and algorithm levels, guided by our in-depth effi-
ciency and robustness analysis.

3.3.1 Device-Level: Power-Efficient Footprint-Compact MZI. Foundry-
providedMZI switch (Foundry-MZI) consumes 𝑃𝜋=30mW for 𝜋 phase
shift and a large footprint consumption (550 𝜇𝑚 in length).We design a
low-power MZI switch (LP-MZI) with compact size (115 𝜇𝑚 in length)
and 50% lower power 𝑃𝜋=15 mW. The phase shifter width𝑤𝑃𝑆 and
phase shifter spacing 𝑙𝑠 between two arms impact the switching power
and device footprint. The phase difference between the upper and
lower arm of an MZI is Δ𝜙𝑢𝑝 −Δ𝜙𝑙𝑜 . If the upper arm is heated up, the
intra-MZI crosstalk will increase Δ𝜙𝑙𝑜 and thus diminish the phase
difference. It results in a power penalty required to realize the same
Δ𝜙 . We show how MZI power 𝑃𝑀𝑍𝐼 changes with arm spacing and
phase difference between arms in Fig. 4(c). Later, we will explore
optimal settings to balance power and area and show our efficiency
advantage over standard foundry devices.

Figure 6 illustrates the power-area-accuracy design space of a 16 ×
16 PTC. We carefully select device spacing configurations (𝑙𝑠 , 𝑙𝑔) to
balance power, area, and accuracy. For a dense PTC, to meet the
accuracy target (e.g., <1% drop), we set 𝑙𝑠 = 9 𝜇𝑚, 𝑙𝑔 = 5 𝜇𝑚 by
minimizing the power-area product. Importantly, we’ll demonstrate
how sparsity techniques can relax these design constraints and allow
for an even more compact layout, leading to improvements in both
power and area efficiency.

3.3.2 Circuit-Level: In-situ Tunable Light Redistribution for Column
Sparsity. High-speed DACs and drivers for input modulation consume
significant power. To maximize efficiency, we strategically zero out
length-𝑟𝑘1 column vectors in the 𝑟𝑘1 × 𝑐𝑘2 weight chunk, enabling
us to shut down the weight MZIs on those pruned rows. However,
due to non-idealities (e.g., phase bias deviation, crosstalk, and noises),
simply removing power from pruned weight MZIs can still lead to
non-zero weights, which induces computing errors.

We propose a dynamically reconfigurable sparse tensor core with
in-situ light redistribution. This is the key to fully leveraging sparsity

benefits. To illustrate this, we first express the vector dot-product
result with crosstalk and noise as:

𝑦 =

𝑘2∑︁
𝑗

(𝑤𝑗𝑥 𝑗 + 𝛿𝑛𝑃𝐷 ), (11)

where 𝛿𝑛𝑃𝐷 is random photocurrent noises from PDs (we set it to
0.01), and 𝑤 is the weight under crosstalk. Given a weight column
sparsity mask𝑚𝑐 = [𝑚𝑐1, · · · ,𝑚

𝑐
𝑘2
] ∈ {0, 1}𝑘2 , we assume there are 𝑘′2

nonzero elements in𝑚𝑐 .
Based on the above assumption, we compare two conventional

design approaches and highlight our superiority with in-situ light
redistribution technique in Fig. 5.
Weight Pruning Only. In Fig. 5(Left), the input light is evenly split
via a balanced splitter tree without shutting downmodulators. Though
weight MZI power is removed, the DAC/MZM power is wasted. More
importantly, pruned paths still contribute to the final photocurrent,
leading to leakage errors:

𝑦prune =

𝑘2∑︁
𝑗,𝑚𝑐

𝑗
=1
(𝑤𝑗𝑥 𝑗 ) +

𝑘2∑︁
𝑗,𝑚𝑐

𝑗
=0
(𝛿𝑤𝑗 · 𝑥 𝑗 ) +

𝑘2∑︁
𝑗

𝛿𝑛𝑃𝐷 , (12)

where 𝛿𝑤 is the error due to non-idealities, e.g., weight MZI crosstalk,
randomphase noises, and limited extinction ratio (ER) ofMZIs, defined
as the ratio between maximum and minimum transmission.
Weight Pruning + Input Gating (IG). In Fig. 5(Middle), the power
supply of the high-speed DACs and MZMs for pruned ports are gated.
While this saves some power, light still leaks through the high-speed
MZMs (due to a limited extinction ratio). Further, light power on
pruned paths is completely wasted without contributing to useful
computation. The dot-product result is as follows

𝑦IG =

𝑘2∑︁
𝑗,𝑚𝑐

𝑗
=1
(𝑤𝑗𝑥 𝑗 ) +

𝑘2∑︁
𝑗,𝑚𝑐

𝑗
=0
(𝛿𝑤𝑗 · 𝛿𝑥 𝑗 ) +

𝑘2∑︁
𝑗

𝛿𝑛𝑃𝐷 , (13)

where 𝛿𝑤 and 𝛿𝑥 are nonzero errors due to non-ideal variations. Note
that column pruning with input MZM gating has no reduction in the
PD noises and still suffers from leakage errors, as in the second term.
Pruning + Input Gating + Light Redistribution (LR). As shown
in Fig. 5(Right), our proposed solution upgrades the passive even split-
ter tree to an in-situ tunable light rerouter to dynamically redistribute
light power from unused ports to actives ports.

This boosts the intensity on active ports by a factor of 𝑘2/𝑘′2. The
TIA gain will be reduced by a ratio of 𝑘′2/𝑘2 to recover the same range.
Then, the result becomes

𝑦IG+LR =
𝑘 ′2
𝑘2

( 𝑘2∑︁
𝑗,𝑚𝑐

𝑗
=1
( 𝑘2
𝑘 ′2
𝑤𝑗𝑥 𝑗 )+

𝑘2∑︁
𝑗

𝛿𝑛𝑃𝐷

)
=

𝑘2∑︁
𝑗,𝑚𝑐

𝑗
=1̃
𝑤𝑗𝑥 𝑗 +

𝑘 ′2
𝑘2

𝑘2∑︁
𝑗

𝛿𝑛𝑃𝐷 . (14)

Light redistribution has two main advantages: it eliminates the leak-
age errors on pruned ports and effectively reduces the photocurrent
noise by a factor of 𝑘

′
2
𝑘2
. For example, with a 20% column sparsity, light

redistribution will have a 7 dB higher SNR. Optical power redistribu-
tion through light path reconfiguration can be realized by cascading
a number of MZI power splitters. Later, our power-efficient sparse
training algorithm will find the optimal column sparsity mask𝑚𝑐 that
minimizes the power consumption of the rerouter given a defined
column sparsity.

3.3.3 Circuit-Level: On-chip TIA/ADC Gating for Row Sparsity. To
maximize power savings from sparsity, we enable dynamic TIA/ADC
gating in Fig. 7. Our architecture accumulates the photocurrent from
𝑐 PTCs per tile as analog-domain partial product summation and
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shares the same TIA/ADC array among them. To fully exploit the ben-
efits of power gating, we focus on coarse-grained structured sparsity
where entire length-𝑐𝑘2 row vectors in the 𝑟𝑘1 × 𝑐𝑘2 weight chunk

are pruned. This allows us to shut down corresponding TIA/ADC for
energy reduction and eliminate any leakage, crosstalk, and PD noises.

3.3.4 Circuit-Level: Efficient Hybrid Electronic-Optic DAC. High-speed
DACs are a major power bottleneck and often limit resolution and
signal-to-noise ratio (SNR). As shown in Fig. 8, generating 6-bit PAM
signals at 5 GHz with a single electronic DAC (eDAC) incurs a high
power cost 64

7 𝑃0,𝑒𝐷𝐴𝐶 and suffers from low SNR due to overlapped
symbols. We introduce a hybrid electronic-optic DAC (eoDAC) that
realizes weighted signal modulation both in the electrical and optical
domains. The modulation actuators are partitioned into nonuniform
segments, and each can be modulated with a low-bit eDAC. There
exist fundamental trade-offs among eDAC area, number of IO pads,
eDAC power, SNR, and manufacturability. Figure 8 shows different
hybrid eoDAC settings. We find that an optimal design partitions the
phase shifter into two segments (with an 8:1 length ratio) controlled
by 3-bit eDACs. It can approximately realize a 6-bit PAM signal via
two 3-bit modulators, e.g., 010001 = 23 · (010) + 001. The length ratio
can be customized based on the actual MZM response. This setting
requires twice the independent IO pads but saves 2.3× DAC power
with significant SNR improvement. Further partitioning (e.g., pure
optical DAC) offers negligible power benefits while increasing area,
layout, and manufacturing complexity.

3.3.5 Algorithm-Level: Power/Crosstalk-Aware Dynamic Sparse Train-
ing. We adapt the SoTA DST algorithm to automatically select the
structured sparsity patterns aware of accuracy, power, and crosstalk.
Unlike conventional pruning methods, which start from a dense pre-
trained model, we initialize a sparse model and dynamically explore
sparsity patterns, balancing accuracy, power, and robustness.
Crosstalk/Power-Minimized Initialization. Assume a model has
𝐿 convolutional (CONV) layers, and sparsity is not applied to the first
CONV layer and the last linear layer. For the 𝑙-th CONV layer, the
weight matrix is of size𝑊 𝑙 ∈ R𝐶𝑜𝐶𝑖𝐾𝐾 . After im2col, the unfolded
weight matrix will be padded and partitioned into a 6-D tensor𝑊 𝑙 ∈
R𝑝×𝑞×𝑟×𝑐×𝑘1×𝑘2 , where 𝑝 = ⌈ 𝐶𝑜

𝑟𝑘1
⌉ and 𝑞 = ⌈𝐶𝑖𝐾

2

𝑐𝑘2
⌉. With a given

sparsity 𝑠 (percentage of nonzero elements), we need to first assign
the layer-wise sparsity (𝑠1, · · · , 𝑠𝐿) to match the target sparsity and
then initialize the sparsity mask for the 𝑙-th layer𝑚𝑙 = (𝑚 (𝑙,𝑐 ) ,𝑚 (𝑙,𝑟 ) ),
which contains a column mask𝑚𝑐 ∈ {0, 1}𝑝×𝑞×𝑟×1×𝑘1×1 and a row
mask𝑚𝑐 = 𝑟 ∈ {0, 1}𝑝×𝑞×1×𝑐×1×𝑘2 .
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For simplicity, we assign the same sparsity for all layers. Better
strategies in the literature can be applied. With a target sparsity 𝑠𝑙 ,
we assume the same sparsity pattern for each 𝑘1 × 𝑘2 weight block.

Since the horizontal spacing 𝑙ℎ < 20 𝜇𝑚 is much smaller than
the vertical spacing 𝑙𝑣 = 120 𝜇𝑚, crosstalk primarily occurs between
weights in the same column vector. We initialize the row mask𝑚𝑟
with an interleaved pattern (e.g., 101010...) to minimize crosstalk based
on the guidance from Fig. 9(a). The row mask requires up to 50%
row sparsity, which contains the maximum 0’s needed to eliminate
crosstalk. If the target sparsity is high (𝑠 > 0.5), we allocate all sparsity
to the row mask for maximum crosstalk reduction. E.g., 𝑠𝑟 = 0.75
and 𝑟𝑘1 = 8 lead to a row mask of 11111010. If 𝑠 < 0.5, we initialize
column mask 𝑚𝑐 with a column sparsity of 𝑠𝑐 = 𝑠/𝑠𝑟 followed by
power optimization. For each 𝑟𝑘1 × 𝑐𝑘2 block, among 𝑐𝑘2 column
vectors, we find the best group of [𝑐𝑘2𝑠𝑐 ] vectors among all

( 𝑐𝑘2
[𝑐𝑘2𝑠𝑐 ]

)
combinations with the lowest power.

How to Calculate Power Metric for a Mask? Power 𝑃 is estimated based
on Section 3.2.1. In SCATTER, the sparsity mask indicates power gating
on corresponding weight MZIs, input modulation modules, and read-
out TIA/ADC arrays to save power and reduce leakage noises. The
power of the light rerouter can be calculated by the power splitting
ratio derived from the column mask. E.g., with a mask𝑚𝑐 = 10110010,
the root splitter’s ratio is up:lo=(1+0+1+1)/(0+0+1+0)=3:1, and the
phase is Δ𝜙 = 2arccos(

√︃
𝑢𝑝

𝑙𝑜+𝑢𝑝 ) −𝜙𝑏 . If up+lo=0, we set Δ𝜙 = 0. Then,
its power can be obtained by using the P(|Δ𝜙 |, 𝑙𝑠 ) function. Similarly,
the weight MZIs’ power is dynamically calculated with the actual
weights and defined arm spacing.
Power-Aware Pruning Procedure. For simplicity, we only discuss
one layer and remove the layer index 𝑙 in all notations. As shown in
Alg. 1, for every Δ𝑇 step, if 𝑠𝑐 < 1, we fix the row mask and explore
column sparsity pattern with one pruning and one growth stage, We
define a death rate 𝛼 that controls the percentage of unpruned weights
to be pruned in the current step. We apply step-wise CosineDecay
to death rate 𝛼𝑡+1 ← 𝛼𝑡

2 (1 + cos(
𝑡𝜋
𝑇𝑒𝑛𝑑
)) for stable exploration and

convergence, where𝑇𝑒𝑛𝑑 is 80% of total training steps. The remaining
20% of the training steps will keep the samemask and resume accuracy.

The number of weights to be pruned is 𝐷 = 𝛼
∑(𝑚𝑟 ⊙𝑚𝑐 ). The

mask update procedure contains the following stages: ➊ Determine
number of columns to prune. Since the row sparsity pattern is fixed
and identical for all blocks, we can calculate the number of column
vectors to prune as𝑛𝑐 = 𝐷/(∑𝑚𝑟 /(𝑝𝑞)) to match the scheduled death
rate. ➋ Select small-magnitude column vector candidates. Un-
pruned column vectors are sorted based on their ℓ2-norm, ∥𝑤 ∥2. The
smallest 𝑛𝑐 + Δ𝑚 vectors form a pruning candidate pool. Δ𝑚 is the
selection margin (e.g., set to 2) to leave space for power optimization.
➌ Select low-power column vector candidates. Among 𝑛𝑐 + Δ𝑚
candidate vectors, we enumerate all

(𝑛𝑐+Δ𝑚
𝑛𝑐

)
combinations (up to a

maximum combination in case there are too many candidates) and

Algorithm 1 Power/Crosstalk-Aware Dynamic Sparse Training
Input: Loss function L, neural network 𝑓𝑏𝑖𝑛 ( ·) with𝑏𝑖𝑛-bit activation quan-

tization, weight bitwidth 𝑏𝑤 , input data 𝑋 , target 𝑦, learning rate 𝜂, total
steps 𝑇 , steps per epoch Δ𝑇 , epoch to stop prune&grow 𝑇𝑒𝑛𝑑 , pruning
margin Δ𝑚, initial death rate 𝛼0.

Output: Converged parameter𝑊 and sparsity mask𝑚;
1: ——-Crosstalk/Power-Minimized Initialization——-
2: 𝑠𝑟 = max(𝑠, 0.5) ,𝑚 (𝑙,𝑟 ) = InterleavedOnes(𝑠𝑟 ) ⊲ Min-crosstalk𝑚𝑟

3: 𝑠𝑐 = 𝑠/𝑠𝑟 ,𝑚 (𝑙,𝑐 ) = argmin
𝑚 (𝑙,𝑐 ) 𝑃 (𝑚

(𝑙,𝑐 ) ) ⊲ Min-power𝑚𝑐

4: for 𝑡 ← 1 · · ·𝑇 do
5: 𝑊 𝑙 ←𝑊 𝑙 ⊙𝑚 (𝑙,𝑟 ) ⊙𝑚 (𝑙,𝑐 ) ⊲ Inplace apply sparsity mask
6: 𝑊 𝑙 ←𝑊 𝑙 − 𝜂∇

𝑊 𝑙 L
(
𝑓𝑏𝑖𝑛 (Q𝑏𝑤 (𝑊 ), 𝑋 ), 𝑦

)
7: if 𝑡 mod Δ𝑇 == 0 and 𝑡 < 𝑇𝑒𝑛𝑑 then
8: 𝛼 = 𝛼0

2 (1 + cos(
𝑡𝜋

𝑇𝑒𝑛𝑑
) ) ⊲ Schedule death rate

9: ——-Stage 1: Update Sparsity Mask with Pruning——-
10: 𝐷𝑙 = [𝛼 ∑(𝑚 (𝑙,𝑟 ) ⊙𝑚 (𝑙,𝑐 ) ) ]
11: 𝑛𝑙𝑐 = 𝐷 (𝑙 ) /(∑𝑚 (𝑙,𝑟 ) /(𝑝𝑙𝑞𝑙 ) )
12: Select (𝑛𝑙𝑐 + Δ𝑚) column vectors with smallest ℓ2-norm.
13: Further select the lowest power and least crosstalk column vectors.
14: 𝑚 (𝑙,𝑐 ) ←𝑚 (𝑙,𝑐 ) &𝑚 (𝑙,𝑐 )death
15: ——-Stage 2: Update Sparsity Mask with Growth——-
16: 𝑛𝑙𝑐 = (𝑠𝑙𝑝𝑙𝑞𝑙𝑟𝑐𝑘1𝑘2 −

∑(𝑚 (𝑙,𝑟 ) ⊙𝑚 (𝑙,𝑐 ) ) )/(∑(𝑚 (𝑙,𝑟 ) )/(𝑝𝑙𝑞𝑙 ) )
⊲ Number of columns to grow

17: 𝑚 (𝑙,𝑐 ) ←𝑚 (𝑙,𝑐 ) |𝑚 (𝑙,𝑐 )grow ⊲ Similar procedure to select column
vectors with large gradient norm and lowest power to grow

select the combination that minimizes the overall power consumption
𝑃 . We find the death mask𝑚𝑐death where 1 represents newly pruned
columns and update the column mask𝑚𝑐 ←𝑚𝑐 &𝑚𝑐death.
Power-Aware Growth Procedure. To maintain sparsity while ex-
ploring patterns, we grow (resume) roughly the same number of
weights that were pruned. The number of column vectors to be re-
sumed 𝑛𝑐 is calculated based on the target sparsity 𝑠 and the num-
ber of nonzero elements per column, 𝑛𝑐 = (𝑠𝑝𝑞𝑟𝑐𝑘1𝑘2 −

∑(𝑚𝑟 ⊙
𝑚𝑐 ))/(∑(𝑚𝑟 )/(𝑝𝑞)). The column vector selection procedure is based
on gradient magnitude for accuracy, i.e., ∥ 𝜕L𝜕𝑤 ∥2. The same power
minimization procedure applies to resume low-power column vectors.
At the end of the growth stage, we obtain a growth column mask
𝑚𝑐grow, where 1 represents resumed columns. We then update the
sparsity mask, i.e.,𝑚𝑐 ←𝑚𝑐 |𝑚𝑐grow.

4 EXPERIMENTAL RESULTS
4.1 Experiment Setup
Dataset and Models. We evaluate our method on a three-layer CNN
(C64K3-C64K3-C64K3-Pool5-FC10) on Fashion-MNIST, VGG-8 on
CIFAR-10, and ResNet-18 CIFAR-100 for image classification.
Training Settings.We pre-train CNN for 50 epochs with an Adam
optimizer with a 2E-3 learning rate (lr), a cosine decay scheduler,
1E-4 weight decay, and data augmentation (random crop and flip)



Table 1: Optimal device spacing on a dense network (𝑠=1) with
high accuracy under crosstalk and noises (∼1% drop than ideal
accuracy 91.4%) and minimum power-area product (PAP). Aver-
age power 𝑃avg is evaluated on CNN-FashionMNIST For a dense
accelerator, the optimal settings are 𝑙𝑠 = 9𝜇𝑚 and 𝑙𝑔 = 5𝜇𝑚.

𝑙𝑠 (𝜇𝑚) 𝑙𝑔 (𝜇𝑚) Acc (%)↑ 𝑃avg(W)↓ 𝐴 (mm2)↓ PAP ↓
7 5 91.03 23.21 17.33 402.2
8 5 91.11 22.06 17.81 393.0
9 5 91.10 20.58 18.30 376.6
10 5 91.02 20.26 18.79 380.5
11 5 91.00 19.70 19.27 379.8

on Fashion-MNIST. Other models are trained for 200 epochs with an
SGD-momentum optimizer (lr of 0.02 for ResNet, 0.002 for VGG8).
We use learned stepsize quantization-aware training [5]. we employ
𝑏𝑤=8-bit symmetric signed per-tensor quantization for weights and
𝑏𝑖𝑛=6-bit for activations. For DST, we adopt an initial death rate of
𝛼0=0.5,𝑇𝑒𝑛𝑑=80% total training steps. We update masks per epoch. No
noise-aware training is applied, which is orthogonal to our method.
Architecture Settings. We configure our architecture to have 𝑅 = 4
tiles with 𝐶 = 4 cores per tile. Each PTC is of size 𝑘1 = 𝑘2 = 16
working at clock frequency 𝑓 =5 GHz. We assume the same device cost
as prior work [29]. For the MZI power splitter, we have two options:
the one from foundry has 30 mW 𝑃𝜋 with 156.25 𝜇𝑚 in width and 550
𝜇𝑚 in length (Foundry-MZI); our optimized low-power MZI (LP-MZI)
has a length of 115 𝜇𝑚 and width of 𝑙𝑠 +𝑤𝑃𝑆 = 9 + 6 = 15 𝜇𝑚 and a
power profile shown in Fig. 4(c) (𝑃𝜋 = 15.02𝑚𝑊 ).
Evaluation Metrics. We evaluate the total accelerator area (𝐴), total
energy 𝐸tot =

∑𝐿
𝑙

∑𝑝
𝑖

∑𝑞
𝑗
(𝑃𝑙
𝑖, 𝑗
· Cyc𝑙

𝑖, 𝑗
/𝑓 ), calculated by accumulating

each PTC’s power over its execution runtime across all layers and all
weight chunk, and average power 𝑃avg =

𝐸tot
Cyctot/𝑓 . We compare the

area-energy efficiency (TOPS/W/mm2) for efficiency evaluation. To
clarify, since a fine-grained row-column sparse model consumes the
same cycle as a dense model, i.e., it still takes 1 cycle to map a 𝑟𝑘1×𝑐𝑘2
weight block onto our accelerator regardless of row/column sparsity,
allowing us to use power-area product (PAP) to guide the optimization,
which is equivalent to TOPS/W/mm2 given the same speed (lower
PAP means higher TOPS/W/mm2). Note that the memory latency of
loading sparse/dense weights is often hidden by optimized SRAM
design [29]. Hence, we do not show throughput/speed in our results.
We evaluate ideal accuracy and accuracy with crosstalk and random
noises. Since the last layer is sensitive to error and pruning, we protect
the last linear layer by mapping the weights to non-adjacent columns
of MZIs to eliminate crosstalk. Note that we focus on the robustness
and efficiency benefits from our circuit sparsity and light redistribution
techniques on crossbar-style photonic tensor cores. Comparing the
case-study architecture with other PTC designs or electronic digital
accelerators is out of scope.

4.2 Ablation Study
We first explore different spaces to find optimal device/architecture
settings and validate the effectiveness of our proposed techniques.

4.2.1 Optimal Device Spacing. Table 1 shows the trade-offs between
spacing, area, power, and robustness across different MZI device spac-
ing with a dense network (𝑠 = 1). Based on Fig. 6(a), we determine the
most efficient arm spacing is 𝑙𝑠 is 9 𝜇𝑚, minimizing PAP. To ensure
<1% accuracy drop, the minimum MZI horizontal gap 𝑙𝑔 is conserva-
tively set to 5 𝜇𝑚. In later experiments, we show sparsity and power
gating enable further shrinking of the device spacing down to 𝑙𝑔=1𝜇𝑚
with superior crosstalk tolerance.

Table 2: Evaluate accuracy and inference average power on
CNN-FashionMNIST with different sparsity, architecture shar-
ing factor 𝑟 and 𝑐, and three sparsity.

Sparsity=0.8 Sparsity=0.6 Sparsity=0.4
𝑟 𝑐 𝑃avg(W)↓ Acc (%)↑ 𝑃avg(W)↓ Acc (%)↑ 𝑃avg(W)↓ Acc (%)↑
1 1 17.94 91.92 17.22 91.71 17.99 92.08
2 2 12.28 91.86 11.26 91.73 12.50 91.69
4 4 8.052 91.78 7.343 91.76 9.350 91.85
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Figure 9: Thermal variation-induced activation error (N-MAE)
on a 64-channel 3×3 CONV layer. (a) Output TIA/ADC gating (w/
OG)with row sparsitymaskswith interleaved 1’s can effectively
reduce crosstalk-induced error. We use 𝑙𝑠 = 9𝜇𝑚 and 𝑙𝑔 = 5𝜇𝑚.
(b) Input gating and light redistribution (IG+LR) can effectively
suppress the error due to crosstalk and output noises.

4.2.2 Architecture Sharing Factor and Sparsity Granularity. With a
predefined PTC size 𝑘1 × 𝑘2 = 16 × 16, we need to decide the optimal
architecture sharing factor 𝑟 and 𝑐 to balance area, power, and accuracy.
Table 2 explores the impact of input/readout sharing factors (𝑟 , 𝑐) and
sparsity. A sharing factor 𝑟 = 𝑐 = 4 offers the best power efficiency
with minimum accuracy drop, corresponding to pruning/growth of
length-64 weight row/column vectors. With a larger accelerator scale,
i.e., larger 𝑅 and 𝐶 , we will keep the same sharing factor to maintain
the pruning granularity.

4.2.3 Light Redistribution and Power Gating. Figure 9(a) shows dif-
ferent row sparsity patterns and their impacts on thermal variation-
induced activation error. Without TIA/ADC gating, sparse rows lead
to even higher errors since zero elements still suffer from leakage
and crosstalk errors. With the proposed gating, the crosstalk-induced
error will be eliminated, and noises will also be reduced. Figure 9(b)
investigates the effectiveness of light gating and redistribution. With
lower sparsity (more zeros), the SNR will be largely increased with
a significant fidelity boost. In our SCATTER system, we will enable
OG+IG+LR together for the best thermal variation tolerance.

4.2.4 Progressive Power-Area Optimization. Figure 10 illustrates the
step-by-step impact of our optimizations towards orders-of-magnitude
power/area reduction. The baseline is chosen to be a dense network
with foundry MZI switches without architectural hardware shar-
ing (𝑟=𝑐=1). A conservative device spacing 𝑙𝑔=20 𝜇𝑚 is adopted to
avoid thermal crosstalk issues. ➊ As we replace the foundry MZI
with our compact low-power LP-MZI device design, the chip area
can be reduced by 279× with 41.1% average power saving. ➋ We fur-
ther squeeze the tensor core layout with our optimal device spacing,
i.e., 𝑙𝑠=9 𝜇𝑚 and 𝑙𝑔=5 𝜇𝑚, which gives a merely 5.7% power penalty
due to intra-MZI crosstalk but leads to 23.3% area saving. Note that
this aggressive shrinking of gap 𝑙𝑔 causes severe inter-MZI crosstalk,
leading to large accuracy degradation for a dense network. ➌ The
architectural sharing of inputmodulation and readout circuitry largely
amortizes the DAC/ ADC cost, which further reduces the chip area



Table 3: Evaluation of ideal accuracy, accuracy with thermal variation (w/ TV), resumed accuracy with input light gating (IG) +
output TIA/ADC gating (OG) + light redistribution (LR), and single-image inference energy consumption. CNN uses 𝑠 = 0.3, and
VGG8/ResNet18 use 𝑠 = 0.4. Device spacing settings and accelerator area are shown in the upper left corner of the table. To clarify,
the area adopts eoDAC, which is 0.704 mm2 larger than the numbers shown in Fig. 10(➌➍).

𝑙𝑔=1𝜇𝑚
Area=12.37 mm2

𝑙𝑔=3𝜇𝑚
Area=13.44 mm2

𝑙𝑔=5𝜇𝑚
Area=14.20 mm2

DensePTC Ideal Acc Acc w/ TV Acc w/ TV Acc w/ TV

Energy
(mJ)

CNN-FMNIST 91.40 84.00 89.10 90.70 0.59
VGG8-CIFAR10 88.02 59.23 76.05 81.54 3.17

ResNet18-CIFAR100 66.46 44.12 57.84 60.94 24.06

SCATTER Ideal Acc Acc w/ TV Acc w/ TV
+IG+OG+LR Acc w/ TV Acc w/ TV

+IG+OG+LR Acc w/ TV Acc w/ TV
+IG+OG+LR

Energy
(mJ)

CNN-FMNIST 91.56 91.23 91.26 91.24 91.21 91.31 91.30 0.14
VGG8-CIFAR10 85.64 63.49 82.04 72.78 82.04 77.23 82.24 1.78

ResNet18-CIFAR100 59.18 0.51 57.40 0.86 57.40 0.51 57.46 11.18
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Figure 10: Significant power-area-product reduction can be
achieved by progressively adding our proposed cross-layer op-
timization and algorithmic-circuit co-sparsity techniques. De-
tailed power/area breakdown has been presented.

by 39.9% and saves 22% power compared to dedicated DACs/ADCs
for each PTC. ➍ In order to handle the thermal effect from shrink-
ing the 𝑙𝑔 , we add 𝑠=0.3 algorithm-circuit co-sparsity to the accel-
erator. It allows us to turn off 70% of the weight MZIs with 30%
power saving. With such interleaved row sparsity patterns, thermal
crosstalk is mostly eliminated if output TIA/ADC gating (OG) is ap-
plied, which enables extremely narrow MZI spacing down to 𝑙𝑔=1
𝜇𝑚 with 13.3% smaller chip area. ➎ During dynamic sparse training,
we enable power-aware pruning/growth to select low-power column
masks. ➏ With input/output gating and light redistribution, we not
only suppress most of the thermal variations but also actively turn
off the unused DACs/MZMs and TIAs/ADCs. Also, power optimiza-
tion helps to locate the least-power rerouter configurations. ➐ At the
final step, we upgrade the traditional 6-bit eDAC with our optimized
hybrid eoDAC comprised of two 3-bit eDACs and a two-segment
MZM. We trade 2× the DAC area for 2.28× power reduction, which
overall boosts the system power-area product by another 12%.

4.3 Main Results
We compare the accuracy, power, and area on 2 settings and 3 bench-
marks: (1) dense model and (2) SCATTER with power-optimized spar-
sity in Table 3. Both settings adopt the best configurations from Fig. 10.

Models are evaluated under different 𝑙𝑔 with and without thermal
variations. As the 𝑙𝑔 decreases from 5 𝜇𝑚 to 1 𝜇𝑚, we can see a clear
accuracy drop due to thermal variations for dense models. With a
row-column sparsity 𝑠=0.3∼0.4, we observe some improvement on
small benchmarks but much worse results on VGG8 and ResNet18.
Key Insights: ➊ Sparsity itself does not naturally boost the thermal
robustness. A sparse ResNet18 suffers from complete malfunction
under crosstalk. This is expected based on our previous analysis in
Fig. 9. ➋ Dense models degrade with smaller 𝑙𝑔 due to crosstalk, while
SCATTER resumes accuracy, when sparsity meets in-situ power gating
and light redistribution (IG+OG+LR). ➌ Sparsity can enable extremely
narrow MZI spacing 𝑙𝑔=1 𝜇𝑚 to save chip real estate by another 12.9%.
With input/output power gating, the single-image inference energy
on three benchmarks can be reduced by an average of 52.9%. Our ex-
periments demonstrate that SCATTER’s hardware/algorithm co-design
significantly improves power efficiency and enables more compact
photonic accelerators while maintaining thermal crosstalk robustness.
5 CONCLUSION AND DISCUSSION
In this work, we introduce SCATTER, the first dynamically reconfig-
urable photonic tensor core architecture featuring cross-layer opti-
mization for power, area, and thermal robustness. Our in-situ light re-
distribution and power gating enable fine-grained signal path control,
facilitating algorithm-circuit sparsity co-exploration for significant
power reduction and thermal variation suppression. Our power/crosstalk-
aware dynamic sparse training framework automatically explores
thermally robust, low-power sparsity masks tailored to SCATTER hard-
ware. We integrate synergistic optimization with customized compact
low-power photonic devices, hybrid electrical-optical DACs, and op-
timal circuit/architecture design space exploration to maximize effi-
ciency. Compared to dense photonic accelerators based on standard
foundry devices, SCATTER can save chip area by 511× and on-chip
power consumption by 12.4×, maintaining deployment accuracy even
with significant thermal crosstalk and chip noise. This framework’s
dynamic reconfiguration and flexible signal path control establish a
crucial design principle for next-generation reconfigurable photonic
AI systems, pushing the boundaries of compute density and energy
efficiency. Thermal crosstalk suppression via hardware/algorithm co-
sparsity can be applied to other crossbar-type photonic tensor core
designs, offering a generalizable and versatile co-design solution for
reliable and efficient photonic AI computing systems.
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