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Electronic-photonic computing systems offer immense potential in energy-efficient artificial intelligence (AI) accel-
eration tasks due to the superior computing speed and efficiency of optics, especially for real-time, low-energy deep
neural network (DNN) inference tasks on resource-restricted edge platforms. However, current optical neural accel-
erators based on foundry-available devices and conventional system architecture still encounter a performance gap
compared to highly customized electronic counterparts. To bridge the performance gap due to lack of domain spe-
cialization, we present a time-multiplexed dynamic photonic tensor accelerator, dubbed TeMPO, with cross-layer de-
vice/circuit/architecture customization. At the device level, we present foundry-compatible, customized photonic de-
vices, including a slow-light electro-optic modulator with experimental demonstration, optical splitters, and phase
shifters that significantly reduce the footprint and power in input encoding and dot-product calculation. At the circuit
level, partial products are hierarchically accumulated via parallel photocurrent aggregation, lightweight capacitive tem-
poral integration, and sequential digital summation, considerably relieving the analog-to-digital conversion bottleneck.
We also employ a multi-tile, multi-core architecture to maximize hardware sharing for higher efficiency. Across diverse
edge AI workloads, TeMPO delivers digital-comparable task accuracy with superior quantization/noise tolerance. We
achieve a 368.6 TOPS peak performance, 22.3 TOPS/W energy efficiency, and 1.2 TOPS/mm2 compute density, push-
ing the Pareto frontier in edge AI hardware. This work signifies the power of cross-layer co-design and domain-specific
customization, paving the way for future electronic-photonic accelerators with even greater performance and efficiency.

I. INTRODUCTION

Photonic computing has emerged as a promising tech-
nology for high-performance and energy-efficient comput-
ing, particularly in computation-intensive artificial intelli-
gence (AI) tasks. Various integrated photonic tensor core
(PTC) designs have been introduced and demonstrated for
ultra-fast photonic analog linear operation acceleration. Co-
herent PTCs that leverage interference and diffraction include
MZI arrays1, butterfly-style meshes2,3, auto-designed pho-
tonic circuits4, coupler-crossbar array5, star-coupler-based de-
sign6, and metalens-based diffractive PTCs7, etc. Besides, to
leverage the wavelength-division multiplexing (WDM) tech-
nique, there are incoherent multi-wavelength PTCs, e.g.,
MRR weight bank8–11, PCM crossbar arrays12, micro-comb-
based computing engine13,14. We emphasize three key fea-
tures of efficient PTCs required by general edge AI from
the perspective of versatility, dynamic reprogrammability, and
domain-specific customization, respectively, shown in Fig. 1.

Versatility, or universality, is one of the important features
of photonic AI hardware to accelerate a variety of DNN work-
loads. A versatile/generic photonic accelerator based on uni-
versal optical linear units is capable of realizing general ma-

a)Meng Zhang and Dennis Yin are equal contributors to this work and desig-
nated as co-first authors.
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FIG. 1: Our versatile, reconfigurable, cross-stack customized
photonic accelerator TeMPO achieves digital-comparable

accuracy with 22.3 TOPS/W efficiency on edge AI.

trix multiplication (GEMM) and thus directly implementing a
wide spectrum of pre-trained digital DNNs. Many specialized
linear units are not applicable to generic tensor computation
since they restrict their matrix expressivity to a subspace of
specialized matrices for higher hardware efficiency, e.g., but-
terfly meshes3 and tensorized MZI arrays15.

Besides versatility, photonic computing requires real-time,
efficient input tensor encoding with low reconfiguration costs.
One example is the MZI arrays, which support arbitrary
weight matrices but suffer from high weight encoding costs
due to the high complexity of matrix decomposition required
to encode weights. Similarly, many subspace linear unit
designs can approximate GEMM operations by cascading
more programmable devices but require an even more costly
optimization-based approach to map the weight matrix3,6.
Such a property restricts those designs to only support weight-
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static linear operations, e.g., fully-connected (FC) layers and
convolutional (CONV) layers, where weights are pretrained
and pre-encoded into the device/circuit transmissions. How-
ever, advanced AI models, e.g., Transformer16–21 based on at-
tention operations where both matrix multiplication operands
are dynamic, full-range, and general tensors, cannot be effi-
ciently mapped to those weight-static PTCs.

The third critical feature to enable efficient, scalable PTCs
is domain-specific hardware customization. ➊ At the device
level, many optical computing hardware demonstrations are
based on standard foundry PDK elements, which are designed
for optical communications and not optimized for analog neu-
romorphic computing. For example, bulky electro-optic (E-
O) modulators (∼mm-level in length)22 can be used as the
transmitter module for high-speed communication but are not
suitable for analog computing as the footprint is intractable
with quadratically many such modulators for input encoding.
On the other hand, thermo-optic MZI modulators are usu-
ally compact but can only be modulated at KHz frequency
due to the ∼10 µs thermal constant and are usually power-
consuming. Plasmonic devices23 are compact and high-speed
but show high insertion loss (>10 dB), leading to signifi-
cant laser power consumption. Hence, compact, low-power,
low-loss, and high-speed modulators are in high demand for
efficient optical computing. MRRs are compact and low-
loss; however, their high locking power and high sensitivity
to thermal variations limit their efficiency and robustness24.
To bridge the gap at the device level, it is necessary to cus-
tomize computing-specific optical components, e.g., multi-
operand devices for compact neural computing25,26, diffrac-
tive meta-computing systems7. ➋ At the circuit level, cus-
tomization is critical to reducing the long-lasting analog-to-
digital and optical-to-electrical conversion bottlenecks. ➌ At
the architecture level, due to the lack of optical memory, the
large spatial footprint of photonic circuits, and the high digital
memory access cost, the architecture topology and dataflow
also need to be customized to fully leverage the temporal lo-
cality to reduce data movement cost and maximize hardware
sharing. Only with device-circuit-architecture cross-layer co-
design and customization can we realize photonic comput-
ing’s advantages compared to its electronic counterparts.

In this work, we present a time-multiplexed dynamic
photonic tensor accelerator design, dubbed TeMPO, for ef-
ficient edge AI acceleration, featuring ultra-compact slow-
light electro-optic modulators for input operand encoding, hi-
erarchical partial product accumulation with lightweight ca-
pacitive temporal integration modules and multi-core archi-
tecture to maximize sharing of data input/readout circuitry.
One key innovation of this work is the utilization of custom-
designed, foundry-fabricated slow-light MZI modulators (SL-
MZM) with enhanced light-matter interaction for size and
power reduction. It has a phase shifter length of 150∼200 µm
and a footprint about 10× greater than Si MRR while an or-
der of magnitude smaller than the typical foundry offered Si
Mach-Zehnder modulator (MZM) PDK elements. This SL-
MZM is thermally robust, with no thermal tuning/locking cir-
cuit needed, and can also tolerate large manufacturing vari-
ations. Different from a multi-wavelength dynamic PTC de-

signs5, TeMPO simplifies the spectral multi-wavelength encod-
ing to high-speed temporal encoding, eliminating the need
for complex dispersion-engineered broadband device designs
such as Si modulators, optical power splitters and directional
couplers as well as remove WDM MUX/DEMUX overhead.

The major contributions of this paper are as follows:

• We present a compact and energy-efficient multi-core
photonic edge AI accelerator, TeMPO, with device and
architecture co-optimization and customization.

• Compact & Efficient Photonic Components – To
enable ultra-fast, compact, low-power input operand
encoding and dot-product computing, we adopt a
customized slow-light MZM device with orders-of-
magnitude smaller footprint and switching energy than
the PDK MZM. We also customize optical power split-
ters with varying splitting ratios and an ultra-low power
π/2 phase shifter. With customized devices, TeMPO is
6.8× more compact and 9.1× more power efficient than
the foundry counterparts.

• Hierarchical Product Accumulation – TeMPO lever-
ages photocurrent aggregation and temporal integration
for partial product accumulation in the analog domain,
significantly reducing the laser power and analog-to-
digital conversion cost. We also enable input modula-
tor sharing and output readout circuitry sharing to min-
imize the E-O/O-E cost.

• Versatile and Robust Edge AI Evaluation – We evalu-
ate TeMPO on both convolutional NNs and Vision Trans-
formers on AR/VR speech recognition, image classifi-
cation, and advanced semantic segmentation tasks and
show comparable accuracy and superior robustness to
low-bit quantization and hardware noises from experi-
mental measurement.

• New Area-Energy Efficiency Pareto Frontier – We
comprehensively evaluate the scalability and efficiency
of our proposed TeMPO architecture and show 368.6
TOPS peak performance, 22.3 TOPS/W energy effi-
ciency, and 1.2 TOPS/mm2 compute density, outper-
forming state-of-the-art electronic counterparts.

II. OVERVIEW OF TIME-MULTIPLEXED DYNAMIC PTC
ARCHITECTURE DESIGN OF TEMPO

Matrix multiplication is the key linear operation for various
information processing workloads. The proposed dynamic
photonic tensor core will perform matrix-matrix multiplica-
tion. For generality, we consider two input matrices, matrix X
with M×N dimension and matrix Y with N ×Q dimension:

X =

 x11 · · · x1N
...

. . .
...

xM1 · · · xMN

 , Y =

y11 · · · y1Q
...

. . .
...

yN1 · · · yNQ

 . (1)
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The matrix multiplication Z = X ·Y is

Z =

 z11 · · · z1Q
...

. . .
...

zM1 · · · zMQ

=

 x11 · · · x1N
...

. . .
...

xM1 · · · xMN

 ·

y11 · · · y1Q
...

. . .
...

yN1 · · · yNQ

 . (2)

The resulting Z is an M × Q matrix; and its a-th row, b-th
column element zab is obtained by calculating the dot-product
of a-th row vector of X and b-th column vector of Y , i.e.,

zab = Xa ·Yb =
[
xa1 · · · xaN

]
·

y1b
...

yNb

 . (3)

Each vector dot-product operation can be mapped to a dy-
namic dot-product engine. Multiple dot-product engines can
form an array structure, i.e., a tensor core, to realize paral-
lel matrix-matrix multiplication. The design of the dot prod-
uct engine will be discussed in Section II A, and the proposed
PTC architecture will be explained in Section II B.

A. Dynamic Photonic Dot-Product Engine

FIG. 2: Schematic of a dynamic optical dot-product engine.

The matrix dot product operation that can be realized in
photonic/electronic hardware is shown in Fig. 2. Matrix dot
product calculates the element zab while the data pairs (xak,
ykb) (k = 1,2, ...,N) are encoded to the phase and amplitude
of input light to the directional coupler. A phase shifter (PS)
is implemented in one input arm of the directional coupler
to generate a −π/2 phase shift. The core of the dot prod-
uct engine consists of a 2×2 directional coupler connecting
followed by a pair of balanced photodetectors. The 2×2 di-
rectional coupler provides interference between coherent light
inputs of two arms. The transfer matrix for this structure with
an ideal, lossless directional coupler can be expressed as

TDC ·TPS =

[
t jκ
jκ t

]
·
[

1 0
0 e− j π

2

]
, (4)

where t is the through-coupling coefficient, k is the cross-
coupling coefficient and j is the imaginary unit. For dot prod-
uct computing, 50:50-splitting is used, so t = κ =

√
2/2. Con-

sider the electric fields of input signals to the directional cou-
pler [E1,E2]

T encoding a data pair [xak,ykb]
T , the output of the

directional coupler [Eout1,Eout2]
T can be expressed as[

Eout1
Eout2

]
= TDC ·TPS

[
E1
E2

]
=

√
2

2

[
1 j
j 1

]
·
[

1 0
0 − j

]
·
[

xak
ykb

]
=

√
2

2

[
xak + ykb

j(xak − ykb)

] . (5)

The photocurrent of the PDs connected to the directional cou-
pler is proportional to the received optical power. Assume
identical responsivity of two cascaded PDs, the output current
Iout can be calculated by

Iout ∝ |Eout1|2 −|Eout2|2 ∝ |xak + ykb|2 −|xak − ykb|2 ∝ xakykb. (6)

This is the product between two elements. To accomplish the
dot-product operation between vector Xa and Yb, xakykb needs
to be summed up over all the k labels from 1 to N. The
electrical modulated signal to the slow-light MZM follows
the sample-and-hold operation to inject the vector elements
xa1,xa2, · · · ,xaN and y1b,y2b, · · · ,yNb through two slow-light
MZMs sequentially. A time integrator is connected right after
the dot product engine to operate the summation ∑

N
k=1 xakykb

in the time domain so that the integrator readout voltage Vint
will represent the dot product between vector Xa and Yb,

Vint ∝

N

∑
k=1

xakykb ∝ Xa ·Yb. (7)

The detailed physical realization of the dot-product engine
and time integrator will be discussed in Section III.

B. TeMPO Architecture Overview

We have introduced one dynamic dot-product engine to re-
alize vector dot-product. Now, we introduce a multi-core
time-multiplexed photonic tensor accelerator TeMPO for paral-
lel dot-product, shown in Fig. 3. We have R tiles in the archi-
tecture, and each tile contains C PTCs. Each PTC is a cross-
bar of K×K dynamic dot-product engines, which can finish a
K ×1 times 1×K vector outer product at each timestep.

Given an M ×N times N ×Q GEMM workload, we first
partition the matrix X into M/K horizontal strips, each with a
size of K×N, and matrix Y into Q/K vertical strips, each with
a size of N ×K. One K ×K block in the result matrix Z1:K,1:K
can be computed by accumulating N vector outer product, i.e.,
Z1:K,1:K = ∑

N
t=1 X1:K,t ·Yt,1:K . This length-N reduction can be

mapped to C PTCs in a tile in parallel, and each PTC is re-
sponsible for computing P = N

C vector outer products, which
is formally rewritten as Z1:K,1:K = ∑

P
p=1(∑

C
c=1 X1:K,(c−1)P+p ·

Y(c−1)P+p,1:K). Therefore, the total cycles consumed to com-
pute Z1:K,1:K is P = N

C . There are M
K × Q

K of such matrix blocks
in Z, and we mapped them to R tiles in parallel. This entire
matrix multiplication requires in total MQN

RCk2 cycles.
Each cycle is defined as (1) feeding one vector into our

PTC, (2) reading out the outer product results as photocur-
rent, (3) converting it to the electronic domain, and (4) ac-
cumulating partial product. As we mentioned above, each
PTC consumes P = N

C cycles to finish one K ×K block in the
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FIG. 3: Our designed multi-core time-multiplexed dynamic photonic tensor accelerator TeMPO. ➊-➌ correspond to the
hierarchical partial product accumulation in Eq. (8). All R PTCs in a column share the same Y matrix MZMs. All C PTCs in a

row share the same readout circuitry.

Z matrix, which means a conventional architecture needs to
convert the photocurrent as electronic digital signals through
trans-impedance amplifier (TIA) and analog-to-digital con-
verter (ADC) at every cycle for each PTC and accumulate the
result digitally with adders and registers. With a high data
rate, e.g., 5-10 GHz, the AD conversion and digital accumu-
lation cost is non-trivial, becoming a bottleneck of the perfor-
mance and efficiency as the ADC power is proportional to its
sampling frequency.
Hierarchical Product Accumulation – To resolve the AD
conversion efficiency bottleneck, we adopt hierarchical accu-
mulation both spatially and temporally in the analog domain.
The dot-product result is rewritten as

Z1:K,1:K =
P/T

∑
p=1︸︷︷︸
➌

T

∑
t=1︸︷︷︸
➋

C

∑
c=1︸︷︷︸
➊

X1:K,(c−1)P+(p−1)T+tY(c−1)P+(p−1)T+t,1:K .

(8)
➊ At each timestep t, the photocurrent carrying the partial
product results will first be aggregated from all C PTCs in par-
allel within the same tile via analog current summation, cor-
responding to the most-inner summation in Eq. (8). ➋ Then,
the aggregated photocurrents will be further accumulated over
T timesteps at the temporal integrator but still in the analog
domain. ➌ After every T timesteps, the partial sum will be
converted to the digital domain via the analog-to-digital con-
verters (ADCs), and the integrators will be reset and prepared
for the following T cycles. With this hierarchical accumula-
tion mechanism, the ADC conversion is minimized to merely
P/T times per matrix block, leading to T times lower AD
conversion frequency and, thus, power consumption.

Input/Output Hardware Sharing – To maximize the hard-
ware sharing of the multi-core accelerator, we explore both
input and output sharing. For input sharing, R PTCs across
different tiles within the same column will share the same Y
vectors. Thus, the input vectors Y can be modulated in the
shared MZM arrays and broadcast to them via on-chip waveg-
uide interconnects. For output sharing, the partial products
from C PTCs within a tile are aggregated by summing up their
photocurrent. For each tile, all C PTCs share the same group
of integrators, TIAs, and ADCs. The total cost of those read-
out circuitry can be reduced by C times with output sharing.

Next, we focus on the detailed design of a K × K time-
multiplexed PTC to explain how our architecture performs
dynamic matrix-matrix multiplication. For illustration sim-
plicity, we set the matrix with an equal number of rows and
columns, i.e., K, while the architecture can be applied to a
matrix with arbitrary dimensions. A coherent monochromatic
light source is used as the input to the photonic tensor core
units. The input light is first fanned out to 2K waveguides via
a 1× 2K splitter. Next, a slow-light Mach-Zehnder modula-
tor (SL-MZM) is connected in each waveguide arm, serving
as the input operand modulator of the PTC. Digital electri-
cal signals carrying the matrix information are converted to
analog optical signals represented by the amplitude and phase
before optical signals reach the dot-product engine for com-
puting. Let Ein be the electric field of the input light to the SL-
MZM, and the electric field of MZM output can be expressed
as Ein cosθ , allowing broadband mapping of both positive and
negative values. We consider two optical routing schemes
for the PTC architecture in this work, namely a double-layer-
splitters scheme TeMPO-D and an embedded-uneven-splitters
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FIG. 4: Schematic of our proposed time-multiplexed
double-layer-splitter tensor core TeMPO-D. K = 3 is sketched

here as an example for illustration.

scheme TeMPO-E to guide the encoding optical signals to the
targeting dot product engines. Schematics of the proposed
PTC architecture are shown in Fig. 4 and Fig. 5.

1. Double-Layer-Splitter PTC Design TeMPO-D

A double-layer-splitter PTC design consists of two lay-
ers of optical splitters to route the encoded optical signals
to the targeted dot product engines for matrix calculation,
and a schematic of the architecture is shown in Fig. 4. Af-
ter the 1st fan-out 1 × 2K splitter, half of the optical paths
(bottom K paths) are used to encode matrix X via an SL-
MZM array, mapping to a row vector of matrix X : Xa =
[xa1, · · · ,xaK ],(a = 1,2, · · ·). SL-MZMs on the top K arms
of the 1×2K splitter couple data of N column vectors of ma-
trix Y : Yb = [y1b, · · · ,yKb]

T ,(b = 1,2, · · ·). The second layer
consists of 2K 1×K optical splitters, each of which evenly
splits the optical power with encoded information into K sec-
ondary output arms so that dot products between any pair of
Xa and Yb can be calculated simultaneously at K2 dot product
engines. Waveguide crossings are needed for this architecture.
The coded optical signals may pass up to (K − 1)2 crossings
to reach the dot product engine.

2. Embedded-Uneven-Splitters PTC Design TeMPO-E

A schematic of the embedded-uneven-splitters PTC design,
TeMPO-E is illustrated in Fig. 5. Different from the TeMPO-D
design, this architecture adopts a series of uneven splitters to
eliminate waveguide crossings. The splitting ratios are set at
1 : (K −1), 1 : (K −2), · · · , and 1 : 1. For a PTC with K2 dot
product engines, the splitting ratios of the two optical splitters
that guide light into the dot product engine zab are 1 : (K −a)
and 1 : (K−b), respectively, to ensure identical input power to

Z11 Z12 Z1K

Z21 Z22 Z2K

ZK1 ZK2 ZKK

1:(K-1)

1 2K splitter

Waveguide
crossing

1:(K-1) 1:(K-1)

1:(K-1)

1:(K-1)

1:(K-1)

1:(K-2)

1:(K-2)

1:(K-2)

1:(K-2) 1:(K-2) 1:(K-2)

SL-MZM

Si Photonic Chip

laser

FIG. 5: Schematic of our proposed time-multiplexed
embedded-uneven-splitter tensor core TeMPO-E. K = 3 is

sketched here as an example for illustration.

each dot product engine. The maximum number of crossings
on the optical path is K −1.

Comparing TeMPO-D with TeMPO-E, TeMPO-D design only
requires 1 optical splitter before reaching the DOT engine
with the cost of the increased number of waveguide crossings
in some waveguide paths. For the TeMPO-E design, the num-
ber of uneven power splitters and waveguide crossings needed
in each path are both K − 1, while TeMPO-D design requires
(K − 1)2 waveguide crossings. We anticipate lower accumu-
lated device loss in the TeMPO-E design when K is large. In the
following discussion, we only focus on the embedded-uneven-
splitters design TeMPO-E and simplify it as TeMPO.

III. PHOTONIC COMPONENTS FOR PTCS

A. Laser Source

A PTC utilizing optical wave phase and amplitude in
time-domain processing only requires a monochromatic light
source for optical signal processing. In the realm of integrated
photonic computing chip design, o-band operation, in com-
parison with c-band components, offers several distinct ad-
vantages such as a smaller optical mode volume in Si/SiO2
waveguide structure, higher mode confinement with tighter
bending radius and > 1.5× higher in Ge PD responsivity 27,28.

The second consideration pertains to the choice between
an on-chip III-V integrated laser diode and an off-chip laser
module. While the heterogeneously bonded laser to Si holds
the promise of the miniaturized, photolithographically defined
coherent on-chip light source, it has yet to mature for mass
production. The long-term reliability of on-chip lasers re-
mains undetermined. Laser cavities are highly sensitive to
temperature variations, thus heterogeneously intergated on-
chip laser, being in the close vicinity of other electronics that
generate considerable heat would demand more complex elec-
tronics circuits in thermal management to maintain on-chip
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laser diode emission stability in optical mode/wavelength, po-
larization, and optical power. Integrated optical isolators on Si
platform are not yet available from SiPho foundry; while an
optical isolator is critical in minimizing reflections that could
disturb laser operation if the reflection is not addressed. Vary-
ing laser operation will also, in turn, degrade the PTC perfor-
mance. In this work, we advocate a technological path that
utilizes a separate, off-chip laser module that takes advantage
of the latest advancement in optical packaging to achieve low
insertion loss at the fiber-to-chip interface.

High-power monolithic o-band lasers, capable of produc-
ing output powers as high as 150 mW29, are commercially
available now. In this work, we utilize a moderate laser power
of 100 mW for system power-related analysis and evaluation.
Utilizing index-matched epoxy and emerging packaging tech-
nology, such as photonic wires30–32, one can expect 0.5dB -
2dB insertion loss at the fiber to chip facet.

B. Slow-Light Mach-Zehnder Modulator

Mach-Zehnder Modulators (MZMs) play a crucial role in
the conversion of electrical signals to the optical domain in
chip-scale PTC. Si modulators, utilizing the carrier plasma ef-
fect, offer a cost-effective and high-density integration solu-
tion for on-chip PTC. Achieving a dot product operation for
matrices of the size of K ×K requires 2K modulators for sig-
nal conversion. The physical dimension of these Si modula-
tors serves as a critical design parameter, impacting the scala-
bility of matrix operation. In this study, our approach involves
the adoption of a 1D dielectric photonic crystal waveguide,
specifically a rectangular-shaped Bragg grating33, as a slow-
light-enabled compact modulator to significantly reduce the
footprint of the modulator array34,35. Lately, we have experi-
mentally demonstrated a Si slow-light MZM (SL-MZM) with
a phase shifter length (LPS) of 150 µm for optical compute
application36. The SL-MZM reported in this work was fabri-
cated at AIM Photonics under a multi-project wafer (MPW)
run, ensuring complete foundry compatibility. The modula-
tor output is routed to an on-chip Ge photodetector (PD), a
standard AIM PDK component with a tested bit rate of 15
Gbps. The SL-MZM, operating under maximum Vpp signals
of 3.5V, was characterized with up to 6-bit of resolution using
both staircase and random data inputs. The readout signals
from the PD are displaced on a real-time oscilloscope, shown
in Fig. 6. The averaged variance during bit-holding time is
reported as 9.72×10−7 and 6.59×10−5 for the staircase and
random signal input cases, respectively.

Reflection occurring at different junctions within the modu-
lator device, optical absorption due to carriers in waveguides,
propagation loss in the Bragg grating phase shifter due to in-
creased group indices, and mode mismatch at the Bragg grat-
ing waveguide interfaces are the primary factors contributing
to the modulator insertion loss. The measured total modulator
insertion loss is ∼6.4 dB for LPS = 150 µm and is utilized as
the loss figure in the system evaluation.

To achieve high-bit resolution at a high computing clock
frequency, it is imperative to optimize both the electrical band-

(a) (b)

FIG. 6: Bit resolution testing of SL-MZM at 100 MHz clock
frequency with (a) 6-bits staircase signal and (b) 6-bits

random signal. The red curves show direct driving signals
from the arbitrary waveform generator (AWG), while the

blue curves represent the SL-MZM response readout by the
on-chip PD.

width and linearity of a Si modulator. Operating under re-
verse bias, the speed of a Si SL-MZM is limited by its RC
time constant and photon lifetime. Typically, the PN junc-
tions are doped at an elevated level (ranging from 1018/cm3 to
1019/cm3) to enhance the carrier plasma effect. As the phase
shifter length is reduced in an SL-MZM, the total capacitance
decreases. In this work, the measured SL-MZM junction ca-
pacitance C j was approximately ∼0.75 pF. Depending on the
doping level in the connecting Si bar from the ridge waveg-
uide to the via contacts, the intrinsic resistance of a SL-MZM
ranges from 5 to 10 ohms. The estimated RC time-limited
electrical bandwidth of a SL-MZM is thus in the hundreds
of GHz. The slow-light effect can be viewed as a traveling
wave resonant in its propagation direction, with the optical
bandwidth determined by the Q-factor of the resonator. For
the rectangular Bragg grating-shaped slow-light, an optical
bandwidth of approximately ∼26 GHz is estimated37. How-
ever, the SL-MZM of this work didn’t reach its maximum
bandwidth potential due to impedance mismatch of the elec-
trodes34, mismatch of the RF signals speed with the optical
wave with high group index38 and waveguide dispersion in
the slow light spectrum. Dispersion engineering techniques
such as phase-shifted Bragg grating, dispersion compensa-
tion39, and line-shift photonic crystal waveguide are all ef-
fective approaches in reducing the dispersion-induced band-
width penalty. With careful device design and optimization,
a SL-MZM operating at a 5GHz clock frequency is feasible,
as assumed for system-level performance evaluation in this
study.

C. Optical Power Splitter

The optical splitter is a crucial passive photonic component
in integrated photonic systems for splitting optical power. Var-
ious types of structures such as Y-junction splitters40, multi-
mode interferometers (MMIs)41,42 and directional couplers43

have been demonstrated to achieve power splitting with vary-
ing splitting ratios. Y-junction splitters are usually compact
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and broadband, but the sharp corners can lead to increased
reflection, resulting in unwanted FR resonance in a photonic
system40. The MMI-based power splitter is suitable for 1×K
uniform power splitting, while the shape of tapered input and
output waveguides needs to be carefully designed44. By ad-
justing the coupling length, a directional coupler can also be
used to obtain varying optical power splitting.

1. 1×2K Optical Splitter

In our proposed PTC, the first layer 1× 2K splitter adopts
the design of MMI to fan out the CW laser light to 2K slow-
light MZMs. For a center-excited 1 × K MMI splitter, K-
folded self-imaging can be reproduced at MMI output when
the length of the multimode waveguide section LMMI satisfies

LMMI =
3iLπ

4K
, i = 1,2,3, · · · , (9)

where Lπ represents the beating length given by

Lπ =
π

β0 −β1
≈

4ne f f w2
e

3λ0
. (10)

Here β0, β1 represent the propagation constants of the fun-
damental mode and first-order mode, ne f f is the effective in-
dex of the multimode waveguide section, λ0 is the operated
wavelength and we is the effective width and can be approx-
imated as the multimode waveguide section width WMMI in
silicon photonics45. We use the 1×8 MMI design in44 for
K = 4 case and develop the 1×10 and 1×12 MMI designs
based on Eq. (9). Consider a silicon waveguide layer thick-
ness of 220 nm. The waveguide width is 450 nm and tapered
to 1.2 µm at the multimode waveguide segment. The sim-
ulated electric field profiles of 1×8, 1×10, and 1×12 MMIs
are shown in Fig. 7, corresponding to N = 4, N = 5, and N = 6
scenarios. The dimensions (LMMI ×WMMI) of 1×8, 1×10 and
1×12 MMIs are 27.8 µm×11.3 µm, 34.6 µm×14.1 µm, 41.4
µm×16.9 µm, respectively. The insertion loss (IL) is calcu-
lated to be 0.14dB, 0.20dB, and 0.21dB for 1×8, 1×10, and
1×12 MMIs, respectively. We adopt the 1×10 MMI as a base
design and assume a linear scaling law in MMI’s length/width
for a generic 1× 2K MMI and a near-constant insertion loss
regardless of fanout in later discussion.

2. Optical Power Splitter Guiding to the Dot-Product Engine

The TeMPO adopts directional couplers with varying split-
ting ratios to guide the coded optical signals to each DOT en-
gine for matrix computing. A directional coupler with even
splitting is often offered as a standard PDK component from
SiPho foundries. Keeping the waveguide gap constant, one
only needs to change the coupling length to adjust the split-
ting ratio. With 480 nm waveguide width and 200 nm gap
between two parallel waveguides in the coupling region, our
simulation shows that the coupling length is 14.6 µm, 11.2
µm, 9.2 µm, 8 µm, and 7 µm to achieve splitting ratios of 1:1,
1:2, 1:3, 1:4, and 1:5, respectively.

D. Dot Product Engine Design

The dot product engine to realize vector-vector dot product
is the key computation unit in our proposed photonic tensor
core. A dot product engine consists of a 2×2 optical power
splitter, a π/2 phase shifter, a pair of balanced PD, and a time
integrator. They will be discussed separately in this section.

1. 2×2 Optical Power Splitter

A 2×2 50:50 optical power splitter is needed to generate
interference between the optical signals from 2 input arms.
both directional couplers and MMIs can be used to gener-
ate 50:50 power splitting. The directional coupler consists of
two closely placed parallel waveguides, and the splitting ra-
tio is wavelength-dependent, thus sensitive to the fabrication
accuracy. The 2×2 MMI power splitting is less wavelength
sensitive than the directional coupler, while it is challenging
to achieve an exact 50:50 splitting ratio, and insertion loss
is usually higher than the directional coupler. Two interfer-
ence mechanisms, namely paired interference and general in-
terference, can be applied to MMI design. The paired interfer-
ence mechanism is generally used for designing 2×K MMIs,
where the modes contributing to the imaging in the multimode
section are paired45. The length of the multimode waveguide
section LMMI satisfies

LMMI =
iLπ

K
, i = 1,2,3, · · · . (11)

The two input waveguides have to be placed at +WMMI
6 and

−WMMI
6 vertically from the center. For 2×2 MMI based on a

general K ×K interference mechanism, there is no restriction
on the location of the input waveguides45. The length of the
multimode waveguide section LMMI can be expressed as

LMMI =
3iLπ

K
, i = 1,2,3, · · · . (12)

Lπ in Eq. (11) and Eq. (12) follows the same definition as
Eq. (10). Three 2×2 optical power splitter designs are devel-
oped, and the results are summarized in Table I. The simulated
electric field profiles are illustrated in Fig. 8, where the optical
power is coupled in through one input arm, and output power
is measured through both output arms. Overall, the directional
coupler features lower insertion loss and smaller size, while
the two MMI designs have larger bandwidth near the target-
ing 50:50 splitting ratio. Taking the dimension, splitting ratio,
and insertion loss into consideration, the directional coupler-
based 2×2 optical power splitter design will be utilized in the
following system-level simulation study.

2. π/2 Phase Shifter

Maintaining a consistent π/2 phase difference between two
optical paths can be realized through the utilization of either
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(a) (b) (c)

FIG. 7: Simulated electric field profiles of (a) 1×8, (b) 1×10, and (c) 1×12 MMIs.

(a) (b) (c)

FIG. 8: Simulated electric power profiles of (a) directional coupler, (b) MMI with paired interference mechanism, and (c) MMI
with general interference mechanism.

TABLE I: Simulation results of three 2×2 optical splitter designs.

Splitter Design Directional Coupler MMI (Paired Interference) MMI (General Interference)
Optical Coupling Region Dimension (W ×L) 1.2 µm × 14.6 µm 3.6 µm × 14.5 µm 2.2 µm × 18 µm

Block Dimension (W ×L) 6.5 µm × 31 µm 7 µm × 40.5 µm 7 µm × 44 µm
Splitting Ratio 50:50 52.5:47.5 50:50

Bandwidth at Targeting Splitting Ratio 1550 nm 1500 nm ∼ 1600 nm 1530 nm ∼ 1570 nm
Insertion Loss at 1550 nm 0.05dB 0.18dB 0.37dB

FIG. 9: Side-by-side comparison of the thermo-optic phase
shifters with a waveguide width difference.

a path length difference or a waveguide effective index differ-

ence. In practice, there will be deviations from the targeted
phase shifter (PS) owing to variations in waveguide dimen-
sions induced during the manufacturing process. Thermal tun-
ing is an effective method to adjust the offset to reach a precise
π/2 phase difference. Optimized for the lowest static thermal
tuning power, we adopt the design of neff difference to achieve
a π/2 phase shifter. The difference in phase φ between the
two arms with identical lengths is

β1L−β2L = φ , (13)

where β1 and β2 represent the propagation constants of the
two arms and L is arm length. We set the global waveguide
width to 480 nm while the two arms are set at 488 nm and 472
nm. A 5 µm taper is connected to the PS region. For a PS
length of 30 µm, it will produce a ∼ π/2 phase difference. A
resistive heater is placed in the optical path of both arms fol-
lowing the design in46. As those two arms are placed in close
vicinity, we anticipate minimum width difference variation,
though their actual dimensions can deviate substantially from
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targeted values. In an extreme fabrication variation scenario
of 488+2 nm and 472-2 nm, the phase difference is 0.6345 π ,
corresponding to an estimated heater tuning power of 5 mW to
reach π/2. When the fabrication variation is relatively small
with advanced fabrication technology, we only need negligi-
ble active tuning power to compensate for the phase errors.

3. Photodetector Responsivity and Sensitivity

The sensitivity and responsivity of photodetectors are
closely related to the laser power requirement and integrator
designs. Sensitivity SPD defines the minimum gap between
two levels of optical power received by photodetectors given
a certain bit error rate. The loss of the circuit, including power
splitting loss and insertion loss, is as follows

IL =ILcouple +10log10 K2 + ILMZM +(K −1)ILcross

+K · ILsplitter + ILPS + ILDC.
(14)

Given the circuit insertion loss IL and PD sensitivity, we
can derive the laser power (mW) requirement for each PTC to
obtain b-bit output resolution,

Plaser · (1−10−ER/10)

10IL/10 ≥ Inoise/RPD +2b ·10SPD/10, (15)

where Inoise is the dark current noise floor of the PD, RPD is
the PD responsivity, and ER is the modulator extinction ra-
tio. (1−10−ER/10) is the power penalty to compensate for the
range reduction due to the non-ideal ER. For example, with
20 dB insertion loss, 1 A/W responsivity, 20 nA dark current
noise floor, 10 dB extinction ratio, and -27 dBm PD sensitiv-
ity, the minimum optical power from the laser to obtain 6-bit
output is 14.2 mW.

Meanwhile, the balanced PD’s current range determines the
integrator’s design. Given the principle of time integration,
i.e., Vout ∝

∫
t

IPD
Cint

dt, the maximum voltage with T -timestep in-

tegration of f -frequency datarate is Vmax ∝
∫ T/ f

0
IPD,max

Cint
dt =

T ·IPD,max/(Cint f ). To avoid saturation-induced integration er-
ror, i.e., Vmax ≤VDD, we must carefully design the integration
timestep T and the capacitance Cint given the maximum pho-
tocurrent generated by the balanced PD. Detailed integrator
design specifications are introduced in the following section.

4. Temporal Integrator

The proposed time-multiplexed approach requires integra-
tion of photodetector output current for the accumulation op-
eration as in Eq. (7). This is one of the key mechanisms in
TeMPO to significantly relieve the ADC power bottleneck.
Integrator Design and Optimization – Our integrator de-
sign objective is to support a target maximum integration
timestep T with good linearity in the voltage response and
fast reset speed. We adopt a simple, compact, and foundry-
compatible means of time integration using a capacitor. Ca-
pacitive elements are well suited for analog integration of

FIG. 10: Schematic of the capacitive temporal integrator.

current-based signals. The voltage across the terminals is pro-
portional to the time-integral of the current from the photodi-
ode. After each multiply-accumulate operation is complete,
the capacitor integrator will need to be discharged (reset) be-
fore the next operation. By turning on field-effect transistors
(FETs) in parallel to the capacitor, the charge across the ca-
pacitor can be rapidly dissipated for reset.

Now, we show the detailed integrator design with a tar-
get maximum integration timestep T and linearity and re-
set speed considerations. The proposed integration unit is
shown in Fig. 10. As indicated by the insertion loss analysis
and the PD responsivity, the estimated maximum photocur-
rent IPD,max is 110 µA. Given a maximum targeted voltage
of VDD = 240 mV , the signal data rate of 5 GHz, and a tar-
get integration timestep T =60, we can derive the capacitor
Cint = IPD,maxT/( fVDD) = 5500 fF. Therefore, two foundry-
compatible thin oxide capacitors with a capacitance range of
809 fF to 3.9 nF are connected to the PD’s output. Note
that besides scaling up capacitors proportionally with T , one
can equivalently consider scaling down laser power and thus
IPD,max by a factor of T . This can significantly reduce laser
power but at the cost of a worse signal-to-noise ratio. In our
design, we maintain the same laser power and include the T
factor in the capacitance.

For a linear integrator response, multiple flipped capacitor
pairs are connected in parallel to achieve a symmetric circuit
topology. To enable fast periodic reset, ten 40 nm n-channel
and p-channel FETs are connected in parallel with the ca-
pacitor to ensure sufficient current driving capability for re-
set within a single baud time period. This choice accounts
for the possibility of both positive and negative source current
flow from the balanced photodiode, ensuring effective reset
regardless of signal polarity. For simplicity, only two of each
type of FET are depicted in Fig. 10.

Note that we prefer this capacitor-based design to an alter-
native operational amplifier (op-amp) based design due to ef-
ficiency considerations. Integrators with an op-amp and a ca-
pacitive feedback loop show desired input/output impedance;
however, they are more suitable for voltage integration tasks
with notably increased chip space usage and power. In con-
trast, the capacitor-based design has near-zero power and is
more suitable for our photocurrent accumulation mechanism
in TeMPO.
Integrator SPICE Simulation – The integrator unit’s simu-
lation employs flipped capacitor pairs and 40 nm FETs, as
previously mentioned. We simulated a maximum current of
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FIG. 11: Simulated waveforms of the integrator unit. Input
photocurrent (Top) and integrated voltage signal (Bottom)

show linear integration and rapid discharge (reset).

±110µA over the entire integration period (T =60) to ensure
saturation of the capacitor does not occur. The FET gates re-
ceived 2.5 V for 120 ps, with additional rise and fall times of
40 ps, ensuring a complete reset within a timestep of Trst=2.
The waveforms for both the current signal and the integrated
voltage signal are illustrated in Fig. 11. Given the maximum
anticipated current of ±110 µA, we recorded peak voltages of
approximately ∓ 240 mV.
Integrator Cost Analysis – Our design shows a compact
footprint of Aint=560 µm2, a low power consumption of 0.3
mW, and a long integration timestep T =60, with a fast reset
time Trst of 2 timesteps. Note that the integrator arrays are
shared across C cores in a tile; the integrator area/power cost
can be further amortized by a factor of C, leading to marginal
hardware overhead at the system level.
Integrator’s Benefits to System Efficiency – To justify the
efficiency benefit by setting T to 60, we simulate how timestep
T impacts the system power consumption when mapping a
large matrix multiplication workload onto our architecture in
Fig. 12. The TIA/ADC sampling frequency can be scaled
down proportionally by T times, approximately leading to T×
lower power. To keep ADC/TIA power less than 5%, we set
T to 60 such that the on-chip power consumption can be dras-
tically reduced from 68 W to 16 W, with the ADC/TIA bottle-
neck completely eliminated.

IV. EVALUATION RESULTS

In this section, we will analyze the accuracy and hardware
cost of our TeMPO architecture. We focus on three variants of
our TeMPO with different device configurations listed in Ta-
ble II. TeMPO-Custom-SL is the fully-customized architecture
settings used as our final design. For a comprehensive evalu-
ation of TeMPO-Custom-SL, we also incorporated the analysis
of on-chip memory, considering its area and power impact 5.
Similar to 5, the architecture has a 2MB global on-chip SRAM
buffer and 4KB on-chip local SRAM buffer for each tile, de-
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FIG. 12: Impact of temporal integration timestep T to the
on-chip system power consumption for TeMPO-Custom-SL.

Note that memory and off-chip laser are excluded.

signed to hold two 512×512 matrix multiplication workloads.
To summarize, TeMPO-Custom-SL consumes 321 mm2 area,
17.5 W power at 5 GHz and T =60 integration timestep, and
realizes 368.6 TOPS peak computing speed with 6-bit pre-
cision, 22.3 TOPS/W energy efficiency, and 1.2 TOPS/mm2

compute density.

A. Accuracy Evaluation on Various Edge AI Workloads

The performance of the proposed TeMPO is evaluated on
real-world edge machine learning tasks, including a Vi-
sion Transformer (ViT) DeiT-Tiny18 on image recognition on
ImageNet-1k51, a convolutional neural network (CNN) on
the AR/VR voice keyword spotting task on Google Speech
Command dataset52, and a FCN-ResNet5053 model on se-
mantic segmentation on PASCAL VOC201254. Our evalua-
tion covers both weight-static CNNs and Transformers with
dynamic self-attention operations for both speech and vision
tasks to demonstrate our versatility for diverse edge ML. Dur-
ing model training, we adopt a hardware-aware training flow
to consider the 6-bit weight/input quantization and hardware-
measurement noises to guarantee a robust deployment on our
photonic tensor cores.
Noise/Quantization-Aware Training – We adopt learnable
step-size per-channel quantization55 for both input operands
X and Y and the output S. For weight/activation quantization,
the i-th channel of the quantized tensors is

X i
q =Q(X i) = ([clip(X i/α

i+zi,−2b−1,2b−1−1)]−zi) ·α i,
(16)

where the scaling factor α i and the zero point zi can be
trained with gradient descent for the i-th channel/kernel. The
gradient of the non-differentiable rounding function can be
estimated by using a straight-through estimator (STE). Af-
ter quantization, we also dynamically inject relative random
Gaussian noises with a noise intensity of σ to both input
tensors in matrix multiplication, i.e., X̃q = Xq + ∆X , where
∆X ∼ N (0,(σ |Xq|)2).

Figure 13 visualizes our proposed TeMPO on three repre-
sentative edge AI workloads. Table III shows the task perfor-
mance on each application with 6-bit weight/activation quan-
tization and noise perturbations. Our 6-bit quantized TeMPO



11

TABLE II: Component parameters used in three of TeMPO variants. IL represents insertion loss.

Device Parameter Value TeMPO
Foundry

TeMPO
Foundry-SL

TeMPO
Custom-SL

DAC47
Precision 8-bit

Power 50 mW(@14GSPS) ⋆ ⋆ ⋆
Area 11,000 µm2

ADC48
Precision 8-bit

Power 14.8 mW(@10GSPS) ⋆ ⋆ ⋆
Area 2,850 µm2

Foundry Photodetector22,49

Power 25 nW at -1 V
Sensitivity -27 dBm

Area 16 ×20 µm2 ⋆ ⋆ ⋆
Bandwidth 27 GHz

Responsivity 1.1 A/W

TIA50
Power 3 mW
Area <50 µm2 ⋆ ⋆ ⋆

Bandwidth 40 GHz

Foundry MZM22

Static power 70 nW
IL 3 dB

Area 1600× 460 µm2 ⋆
EO bandwidth 12.5 GHz

Modulation efficiency 450 fJ/bit
Extinction ratio >15 dB

Customized SL-MZM34

(Fabricated at AIM)

Static power 70 nW at -3.5 V
IL 6.4 dB

Area 250× 25 µm2 ⋆ ⋆
EO bandwidth 10 GHz (foreseeable)

Modulation efficiency 50 fJ/bit
Extinction ratio 6 dB

Foundry 2×2 50:50 MMI49 IL 0.11 dB ⋆ ⋆
Area 36×10µm2

Customized 2×2 50:50
Directional coupler

IL 0.05 dB ⋆
Area 31×6.5µm2

Foundry TO phase shifter49
IL 0.03 dB

Area 75×75 µm2 ⋆ ⋆
Power Pπ =7 mW

Customized phase shifter
IL 0.05 dB ⋆

Area 0.5×33 µm2

Power ∼ 0 W

Customized 1×10 splitter IL 0.199 dB ⋆ ⋆ ⋆
Area 34.6×14.1µm2

Foundry 1×2 50:50 MMI49 IL 0.1 dB ⋆ ⋆ ⋆
Area 22×10 µm2

Foundry waveguide crossing49 IL 0.23dB ⋆ ⋆ ⋆
Area 8×8 µm2

Fiber/chip coupling IL 2 dB ⋆ ⋆ ⋆
Laser Wavelength 1550 nm ⋆ ⋆ ⋆

can realize comparable recognition and segmentation perfor-
mance on edge AI tasks.

Noise Robustness Evaluation – To assess the robustness of
our architecture against noise, we tested our speech recog-
nition model with noise-aware training under various noise
intensities injected in inference. Figure 14(b) indicates that
our architecture demonstrates superior robustness to random
noises. Even when increasing the relative noise intensity σ

from 0 to 0.08, the accuracy drops by only 1%. Additionally,
we measure the real noises in the chip testing in Fig. 14(a),
which causes a negligible accuracy drop.

B. System Architecture-Level Performance Analysis

As a case study, we configure our architecture with 6×6
PTCs (R =C = 6), and each PTC is of size 32×32 (K = 32),
working at a clock rate of 5 GHz. We give area and power
estimation of our architecture.
Area Cost – The total area cost of a K ×K PTC, including
photonics and electronics, is estimated as follows

A =2K ·ADAC +2K ·AMZM +A1×2K MMI

+K2(Anode +Aint +AT IA +AADC),
(17)

where each node area in the crossbar can be estimated
by the bounding box Anode = (Lsplitter + 4WBR + WPD +
Wsplitter +Lspacing)(Wsplitter +WBR+WPS +LPD +Wspacing),
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FIG. 13: Evaluation of our TeMPO accelerator on three edge machine learning tasks, including image recognition, voice
keyword spotting, and semantic segmentation on CNNs and Vision Transformers (ViT). All optical NNs are trained with 6-bit

weight/activation quantization and hardware noise injections.

TABLE III: Accuracy of TeMPO on 4 benchmarks with INT-6 weight/activation quantization and noise perturbation (σ=0.01).

Task Dataset Model Fp32 Performance INT6+Noise Acc
Image Recognition ImageNet-1k51 DeiT-Tiny18 0.722 (Accuracy) 0.712 (Accuracy)

AR/VR Voice Keyword Spotting Google Speech Command52 CNN52 0.957 (Accuracy) 0.929 (Accuracy)
AR/VR Semantic Segmentation Pascal VOC201254 FCN R-50-D853 52.28 (mIoU) 51.16 (mIoU)
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FIG. 14: (a) Noise measurement in experimental chip testing of SL-MZM. (b) Inference accuracy evaluation on the CNN
speech command benchmark with various noise intensities (σ ) from 0 to 0.08. The model is trained with the noise-aware

quantization method. The noise intensity (0.0031) observed in the SL-MZM chip testing shows negligible accuracy impact.
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FIG. 15: (a) Layout of one dot-product engine (node). (b)
Area breakdown for the node area Anode. WBR is denoted as

waveguide bending radius, we use 5 µm as the WBR.

where WBR is the waveguide bending radius (set to 5 µm).
Figure 15 shows the details of how we derived the node area.
We draw the layout in Fig. 15(a) and show the dimension cal-
culation details in Fig. 15(b). Other area terms can be directly
obtained from the device area specifications. Note that the
1× 2K MMI is scaled based on our 1×10 MMI design, as-
suming length/width is proportional to fanout. Figure 16(a)
shows the area comparison among 3 TeMPO variants. With
Foundry-based high-speed E-O MZM, the PTC area is bulky,
where the MZMs took almost 81% of the total circuit area.
With our compact slow-light MZMs, the total area is reduced
by 6.8×, while the MZMs only take 4.7% of the total area.
Figure 17(a) further includes on-chip memory in the break-
down. Our customized architecture’s area cost is 321 mm2,
where 76.3% of the area is from the crossbar structure with
minimum peripheral overhead from input encoding and data
readout.
Power Consumption – We first give an analysis of the
system-level on-chip power

P = 2K · (PDAC + ·PMZM)+K2 · (2PPD +Pint +PT IA +PADC). (18)

The DAC power can be derived by PDAC = P0b02b f
2b0 b fs

, where P0

is the DAC power at b0-bit precision and fs sampling rate, and
f is the clock frequency. Other power terms can be directly
obtained from the device power specification.

We emphasize the benefits of our multi-core architecture
and temporal integration mechanism in power efficiency: ➊
Our multi-tile architecture can reduce the MZM and DAC
power by a factor of R for matrix Y since the matrix Y mod-
ulation components are shared across R tiles before the on-
chip waveguide broadcast, shown in Fig. 3. ➋ Multiple cores
per tile share the same array of integrators, TIAs, and ADCs.
Meanwhile, as we analyzed in Section III D 4, temporal in-
tegration can further reduce the TIA and ADC working fre-
quency by a factor of T . Hence, the power of TIA/ADC can
be overall reduced by CT times.

Figure 16(b) shows the power breakdown of the three vari-
ants of TeMPO. Compared to the foundry MZM, which takes
450 fJ to encode each symbol, our designed SL-MZM only
takes 50 fJ to encode each symbol, leading to an 89% reduc-
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FIG. 16: (a) Area and (b) on-chip power breakdown of our
proposed TeMPO across 3 different device configurations

(6×6 PTCs, each with a size of 32×32) working at 5 GHz
and 1550 nm wavelength. Note that memory is excluded.
TeMPO with customized devices achieves 6.8× smaller area

and 9.1× lower power compared to Foundry PDKs.
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FIG. 17: (a) Area and (b) on-chip power breakdown of our
TeMPO-custom-SL architecture (6×6 PTCs, each with a size
of 32×32) working at 5 GHz and 1550 nm wavelength. Note

that memory is included.

tion in the input tensor modulation power consumption. With
time integration (T = 60), the ADC/TIA power is reduced by
60×, which becomes negligible (<5%) in the system power.

Overall, our optimized TeMPO-Custom-SL architecture
equipped with energy-efficient SL-MZMs, customized split-
ters, phase shifters, and temporal integrators can reduce the
on-chip system-level power by 9.1× compared to foundry
PDK variants. Figure 17(b) indicates TeMPO-Custom-SL con-
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FIG. 18: (a) Area, (b) IL, (c) power, (d) computing speed (TOPS), (e) energy efficiency (TOPS/W) and (f) compute density
(TOPS/mm2) with different PTC core size K of our TeMPO-custom-SL (6×6 cores) working at 5 GHz.
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FIG. 19: Compare digital electronics (NVIDIA V10056,
A100 GPU57, Google TPUv458, Groq59, and Graphcore60),

analog electronics (IBM TrueNorth61, Neurogrid62,
HiCANN63, and ReRAM crossbar64), and our photonic AI

hardware TeMPO in compute density (TOPS/mm2) and
energy efficiency (TOPS/W). Our TeMPO-Custom-SL with

customized devices is at the Pareto front.

sumes 17.5 W power while 76% of power is from DACs.
As technology continues advancing, power-efficient DACs are
expected to significantly boost the efficiency of TeMPO further.

C. Tensor Core Efficiency and Scalability Analysis

In this section, we show a thorough analysis of the scalabil-
ity of one PTC with different core sizes K. Besides area, inser-
tion loss (IL), and power, we further define computing speed,
energy efficiency, and compute density. To estimate the peak
performance, we define the computing speed for each core as
2K2 f T/(T +Trst). Note that the reset overhead is considered
as a scaling factor T/(T + Trst). To evaluate the area effi-
ciency, we adopt the metric of peak compute density, which
measures how fast the hardware can compute per unit circuit
area. For a TeMPO architecture (R×C cores) with K×K PTC,
the peak compute density is evaluated as 2K2RCT

f A(T+Trst )
, where f is

the clock frequency (no higher than the maximum ADC sam-
pling rate, i.e., f ≤ fADC,max). The energy efficiency of the
hardware is defined as 2K2RC

f P if we ignore energy cost dur-
ing reset as the accelerator is idle, which measures how much
energy it consumes to finish one operation.

Our TeMPO architecture has 6×6 PTCs, and each PTC core
size varies from 2×2 to 64×64. Figure 18(a) shows a nearly
quadratic area scaling since most of the area is attributed to
the crossbar structure with quadratically many dot-product en-
gines. Figure 18(b) shows almost linear insertion loss scaling
as the number of crossings and splitters linearly increases with
the core size K. Hence, it is not efficient to use an overly large
core size due to intractable insertion loss and laser power. In
Fig. 18(c), we observe that power linearly scales with core
size. Since the hardware power is dominated by DAC and we
have a linear number of DAC to encode input vectors. Com-
pared to quadratic power scaling in electronic circuits (as the
transistor count quadratically increases with a larger K), this
linear power scaling shows the advantage of photonic com-
puting cores. Figure 18(d) shows the superior peak perfor-
mance of our multi-core photonic accelerator. With 5 GHz
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computing frequency and a core size of 30-40, TeMPO can po-
tentially realize Peta operations per second (POPS)-level com-
puting speed. Thanks to the quadratically increasing comput-
ing speed and the linear power scaling, TeMPO shows a con-
sistent efficiency boost with a larger core size in Fig. 18(e).
In terms of compute density, we can obtain a higher density
with a larger core size, as indicated by Fig. 18(f). We expect a
higher compute density in the future with more compact cou-
pler and photodetector designs as technology advances. Over-
all, TeMPO shows good scalability to a larger core size. The
ultimate upper bound of core size is from the insertion loss,
which can be largely relaxed with customized low-loss opti-
cal components.

D. Efficiency Comparison with SoTA Accelerator Designs

We compare our designs with state-of-the-art (SoTA) elec-
tronic digital computers, including GPU, TPU, ASIC, and
analog neuromorphic processors, e.g., IBM TrueNorth. We
observe that our architecture TeMPO can realize competitive
energy efficiency and compute density compared to state-of-
the-art digital computers. However, standard foundry PDK
devices are not the most efficient designs for photonic com-
puting. By replacing the foundry MZM with our SL-MZM
alone, we can boost the compute density from 0.18 (TeMPO-
Foundry) to 0.89 (TeMPO-Foundry-SL) TOPS/mm2. With
customized SL-MZM, splitters, and phase shifters, our fully
customized TeMPO-Custom-SL pushes the Pareto frontier to
a record high level. It achieves 22.3 TOPS/W and 1.2
TOPS/mm2, outperforming the foundry PDK variant by 9.1×
higher energy efficiency and 6.8× higher compute density,
respectively. Compared to NVIDIA A100 GPU and Google
TPUv4, TeMPO-Custom-SL shows 13.8× higher TOPS/W and
1.7× higher compute density, respectively.

V. CONCLUSION

In this work, we present TeMPO, a time-multiplexed
dynamic photonic tensor accelerator designed for energy-
efficient edge AI applications. Through careful co-design
across device, circuit, and architecture layers, TeMPO achieves
significant performance improvements compared to state-of-
the-art electronic accelerators. Key innovations include cus-
tomized slow-light Mach-Zehnder modulator, optical split-
ter, and phase shifters for low-power dynamic tensor compu-
tation, analog domain accumulation via capacitive temporal
integration to eliminate analog-to-digital conversion bottle-
neck, and a multi-core architecture for efficient hardware shar-
ing. TeMPO demonstrates comparable task accuracy with 6-bit
quantization to digital counterparts, superior noise tolerance,
and a peak performance of 368.6 TOPS, energy efficiency of
22.3 TOPS/W, and compute density of 1.2 TOPS/mm2, push-
ing the Pareto frontier for edge AI hardware. This work estab-
lishes a new frontier in energy-efficient analog AI hardware,
paving the path for future electronic-photonic accelerators in
ubiquitous edge AI applications.

VI. DATA AVAILABILITY

The data that support the findings of this study are available
within the article.
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