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Abstract—In recent decades, the demand for computational
power has surged, particularly with the rapid expansion of arti-
ficial intelligence (AI). As we navigate the post-Moore’s law era,
the limitations of traditional electrical digital computing, includ-
ing process bottlenecks and power consumption issues, are pro-
pelling the search for alternative computing paradigms. Among
various emerging technologies, integrated photonics stands out as
a promising solution for next-generation high-performance com-
puting, thanks to the inherent advantages of light, such as low
latency, high bandwidth, and unique multiplexing techniques. Fur-
thermore, the progress in photonic integrated circuits (PICs), which
are equipped with abundant photoelectronic components, positions
photonic-electronic integrated circuits as a viable solution for high-
performance computing and hardware AI accelerators. In this
review, we survey recent advancements in both PIC-based digital
and analog computing for AI, exploring the principal benefits and
obstacles of implementation. Additionally, we propose a compre-
hensive analysis of photonic AI from the perspectives of hardware
implementation, accelerator architecture, and software-hardware
co-design. In the end, acknowledging the existing challenges, we
underscore potential strategies for overcoming these issues and
offer insights into the future drivers for optical computing.

Index Terms—AI accelerator, optical computing, optical neural
network, photonic integrated circuit, silicon photonics.

I. INTRODUCTION

A S THE semiconductor industry advances to process nodes
below 3 nanometers, it increasingly encounters inherent

physical limitations of both devices and materials [1], [2]. A
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primary concern is the surge in power consumption as clock
frequencies reach gigahertz levels, leading to overwhelming
heat generation [2], [3]. Furthermore, at these diminutive scales,
quantum uncertainties begin to dominate electron behavior,
resulting in increased transistor errors and reduced reliability.
Additionally, AI has made remarkable strides in recent years,
exerting a growing influence on various aspects of our lives,
such as image recognition [4], [5], [6], [7], natural language
processing [8], [9], autonomous driving [10], and medical diag-
nosis [11], [12], which have further increased societal demand
for computational power. One notable example is the emergence
of large language models (LLMs) such as GPT (Generative
Pre-trained Transformer). These models exhibit human-level in-
telligence and have revolutionized a wide range of applications,
from sophisticated chatbots to advanced text analysis tools.
However, the advancements of deep neural networks (DNNs)
are driven by rapidly increasing model sizes and data volumes,
which necessitate significantly expanding computational de-
mands. For instance, the GPT-3 model developed by OpenAI,
which contains around 175 billion parameters, requires 14.8
days for training using a cluster of around 10,000 NVIDIA
V100 GPUs, with an estimated energy consumption of 1287
MWh [13], [14], [15]. Hence, in the post-Moore’s Law era, tra-
ditional electronic computing architectures, designed to execute
sequential, digital programs, are inadequate to meet the surging
demand for high-performance computing and AI tasks. There
is a pressing need to develop processing units capable of per-
forming high-speed, energy-efficient computing. In response,
both industry and academia are actively exploring alternative
avenues from novel materials [16], [17], architectures [4], [18],
to the investigation of new computational paradigms.

Among the emerging technologies, integrated photonics is a
promising candidate for next-generation computation that can
overcome the bottlenecks of their electrical counterparts. First,
the speed of optical signals travel within optical waveguides
surpasses that of electron-based transit through transistors with
multiple fanouts by 1-2 orders of magnitude [19]. The delay and
loss in waveguides are primarily determined by the optical path
length. Additionally, a series of high-speed and energy-efficient
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(operating on the order of sub-picojoule per bit) devices for
optical computing have been developed [20], [21], [22]. Notably,
the power consumption of transistor-based electrical circuits
exhibits a cubic relationship with the clock frequency f [23],
whereas photonics-electronic platforms scale only linearly with
f [24], effectively relaxing the frequency constraints associated
with the power wall issue. Furthermore, as bosons, photons do
not conform to the Pauli exclusion principle, allowing for the
utilization of unique multiplexing techniques such as wavelength
division multiplexing (WDM), which further increases the over-
all bandwidth. Moreover, compared to another photonic comput-
ing scheme in the form of free-space diffraction [25], [26], in-
tegrated photonics offers superior compactness for higher-level
integration. The advancement of silicon photonics has enabled
the implementation of optical computing on low-cost PICs
with high integration density, leveraging CMOS-compatible
silicon manufacturing techniques. As an increasing number of
foundries develop their validated process design kits (PDKs), the
integrated photonics industry is progressively moving towards
standardization similar to that of the fabless semiconductor
industry [27]. This trend not only improves accessibility for
designers and users but also offers more reliable performance.

Integrated photonics has emerged as a promising platform for
AI accelerators, benefiting from its inherent attributes of high
parallelism, low latency, and low power consumption. In the last
decade, a diverse range of PIC-based optical neural networks
(ONNs) that implement multilayer perceptrons (MLPs) [28],
convolutional neural networks (CNNs) [26], [29], [30], spiking
neural networks (SNNs) [31], [32], etc., have been reported,
demonstrating remarkable performance on machine learning
tasks. The fundamental operations of neural networks, involving
data transfers and tensor operations, are achieved through the
combination of passive optical devices and high-performance
active photonic-electronic components [33], [34]. Specifically,
optical signals can be modulated by electrical signals and “multi-
plied” in accordance with the transmission function of the PIC.
The hybrid photonic-electronic platform combines the adapt-
ability of electronic control with the high-speed capabilities of
optical computing. Recently, cutting-edge optical processing
units have been reported with a matrix processing speed of
3.8 trillion operations per second (TOPS) via time-wavelength
multiplexing [30], while other works demonstrated ultra-low
power consumption on the order of sub-femtojoules per bit [22].

While integrated photonics offers new opportunities, existing
photonic-electronic computing systems still encounter several
practical challenges, such as:
� The typical micron-scale dimensions of optical elements in

PICs are significantly larger than the transistors in cutting-
edge VLSI technologies. Besides, a range of practical
issues, such as footprint, control complexity, and accumu-
lated loss, etc., limit the functionality and scalability of
PICs for advanced computing applications.

� The widespread reliance on electrical components for
electro-optical (E-O) modulation, parameter updates,
data transfer, and analog-to-digital/digital-to-analog (A/D,
D/A) conversion in photonic-electronic platforms leads to
considerable energy consumption.

� The inherent challenges in PICs, such as training algo-
rithms, on-chip implementation of nonlinearity for ONNs
and system robustness against noise and crosstalk, require
careful consideration in both hardware design and software
coordination.

This review focuses on recent progress in photonic-electronic
integrated circuits for computing. Spanning from digital com-
puting to analog AI accelerators, this paper is structured as
follows. Section II begins with an overview of the fundamental
blocks in PIC-based digital computing, followed by a survey
of recent highlights ranging from the implementation of logic
gates to fully functional photonic processing units. Section III
focuses on the implementation of ONNs, covering aspects of
photonic tensor cores, nonlinearity, and hardware-aware training
strategies. Beyond a review from the device and circuit level,
Sections IV and V provide a comprehensive analysis of recent
photonic AI efforts from the perspectives of accelerator ar-
chitectures and software-hardware co-design, respectively. The
review culminates with Section VI, which offers an outlook
on PIC-based optical computing and provides a summarizing
conclusion.

II. SURVEY OF OPTICAL DIGITAL COMPUTING WITH PICS

PICs are comprised of a range of optical components, both
passive and active, featuring various hardware implementations
and circuit topologies to fulfill distinct functionalities. This
section will focus on E-O digital logic, and provides a concise
overview of recent progress in PIC-based digital computing,
while highlighting these implementation techniques and associ-
ated challenges.

A. Optical Logic Gates

In the digital domain, both input and output are binary, and
the resolution is defined by the number of bits and remains
unaffected by the circuit size. A range of building blocks for
optical digital computing on integrated photonic platforms, such
as optical switches [35], modulators [22], [36], interconnects and
photodetectors [37], [38], [39], [40], have been experimentally
demonstrated. Basic logic operations (NOT, AND, OR, XOR,
etc.), which are fundamental elements of digital systems, have
been implemented by diverse PICs. Among these, electro-optic
logic, also known as optical-directed logic, has been widely
investigated by many research groups as well as foundries. As
shown in Fig. 1(a), all E-O devices in the functional block, such
as Mach-Zehnder Interferometers (MZIs), microring resonators
(MRRs), microdisks, etc., are simultaneously configured by
electrical signals. When light traverses the block, optical signals
are modulated to execute logic operations in accordance with
the PIC design and then propagated downstream or detected
by monitors to read out the results. An important feature of
the E-O digital logic is that each device is controlled by in-
dependent electrical input simultaneously and that signals are
transmitted via light without the limitation of RC time constant
and delay accumulations inherent in electrical systems. In other
words, E-O logic merges the convenience and flexibility of
electrical control with the high-speed capabilities of optical

Authorized licensed use limited to: Arizona State University. Downloaded on December 28,2024 at 10:25:59 UTC from IEEE Xplore.  Restrictions apply. 



7836 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 42, NO. 22, NOVEMBER 15, 2024

Fig. 1. Implementations of electro-optic logic gates. (a) Schematic diagram of E-O logic composed of passive and active optical components. During each clock
cycle, electrical inputs are used to configure the logic circuit, while light carries out logic operations based on the transmission characteristic of the logic block.
(b)–(d) Schematic of MRR-based AND/NAND, OR/NOR, and XOR/XNOR gates, as proposed in Ref [41], [42]. In the diagram, the dotted line and the solid line
represent MRRs functioning in the “block/pass” and “pass/block” modes, respectively. These configurations correspond to the outputs of “0” and “1” at the through
port, given a logic “0” as the electrical input.

computing. Fig. 1(b)-(c) show examples of E-O logic gates
using two cascaded MRRs to perform 2-input AND/NAND
and OR/NOR operations [41]. The proposed optical logic gate
leverages the transmission characteristic of add-drop MRRs,
which work as optical switches to implement logic operations
and generate complementary outputs at the through and drop
ports. Additionally, by configuring the resonant states of MRRs
with “0” operands via selecting continuous wave (CW) inputs
at either on-resonance or off-resonance wavelengths, a sin-
gle photonic circuit can execute a variety of logic functions.
With consistent logic but varying PIC topologies, XOR and
XNOR gates featuring a crossbar structure also have been
demonstrated [42] (Fig. 1(d)). Operating with similar mech-
anisms, MZI-based optical gates have also been extensively
developed [43], [44].

In addition to E-O modulation, all-optical logic gate devices
have also attracted attention. These devices have been exper-
imentally demonstrated using various structures and phenom-
ena, including photonic crystals [45], [46], surface plasmon
polaritons (SPPs) [47], nanowire networks [48], and slot waveg-
uides [49], [50]. A comprehensive classification, explanation
of mechanisms, and comparative analysis of all-optical logic
gates has been detailed in the prior review [51], [52], [53].
Compared to E-O logic, all-optical logic offers the potential
for higher operation speed and bandwidth without extra energy
consumption associated with O-E-O conversion. However, the
implementation of all-optical logic confronts several practical
challenges. Firstly, the complexity and requirements of design

and fabrication (e.g., the transmission characteristic of photonic
crystal is highly sensitive to its lattice constant) lead to inherent
instability and a low contrast ratio between logical states [50].
Secondly, while all-optical gates can be more energy-efficient
in signal processing, they often require higher optical signal
power (mW-level) to compensate for higher losses or to induce
the necessary nonlinear effects for switching. Furthermore, the
limited functionality and scalability of all-optical logic, coupled
with its higher cost, restrict its widespread application compared
to E-O logic.

In recent years, integrated photonics have expanded beyond
traditional classical optics, emerging as a compelling platform
for quantum information science. Quantum logic gates based
on the aforementioned active/passive devices have been widely
reported [54], [55], [56]. Quantum PICs offer several significant
advantages over bulk optics in the realm of quantum computing.
First, PICs enable precise control of phase, polarization, and
spatial mode with higher stability, which are essential for ma-
nipulating quantum states. Second, silicon exhibits a high third-
order nonlinear coefficient χ(3), facilitates the effective imple-
mentation of on-chip single/entangled photon sources through
optical processes such as four-wave mixing (FWM) [57]. Third,
PICs can integrate the fundamental building blocks of quan-
tum computing–such as photon source, modulators, and single-
photon detectors, etc., –in monolithic, hybrid, or heterogeneous
configurations [58]. This integration yields scalable, robust, and
reconfigurable circuits capable of handling complex quantum
computing tasks [57], [59], [60].
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B. Combinational Logic and Reconfigurable PICs

In digital circuits, the output of a combinational logic unit
is determined solely by the current input combination, without
dependence on previous states. Similarly, the implementation
of optical combinational logic could begin with extracting the
logical expression from its truth table, followed by designing
the corresponding PIC based on the simplified expression. The
implementation can rely on assembling fundamental logic gates
or leveraging the unique characteristics of optical components or
multiplexing techniques for fewer devices and compact layouts.
Employing these strategies, diverse optical combinational logic
units, including but not limited to adders [61], comparators [62],
encoders [63], [64] and decoders [65], have been reported.

The aforementioned optical logic gates and units, tailored
for specific tasks, are constrained by a fixed or limited logic
representation. The inherent limitation not only complicates the
development process but also increases the cost. To address this
challenge, reconfigurable PICs offer a promising solution by
programming the operational states of optical switches within
a pre-designed framework using additional signals. The input
operands and the reconfiguration signal can be independently
managed by two separate control units within the modulator,
such as the dual arms of MZIs. Generally, reconfiguration signals
do not require high-speed modulation to the same extent as
the input signals used as logic operands. Qiu et al. proposed
a reconfigurable logic unit based on MRRs embedded with two
modulation mechanisms [66]. As is shown in Fig. 2(a), the
logic operand is modulated at high speeds via the p-i-n junction
operating in the carrier injection mode, while the resonant state
of MRR can be reconfigured using the microheater. Addition-
ally, multi-operand modulators and non-volatile devices are also
promising candidates for reconfigurable PICs [67], [68], [69].

An arbitrary combinational logic expression Y with n inputs
X1, X2, . . . , Xn can be represented as a sum of products derived
from these inputs, which can be expressed as:

Y = y1 + y2 + . . .+ ym, where yi =
n∏

k=1

Xk or Xk (1)

In this expression,Xk denotes the complement logic of input
Xk. Using reconfigurable optical switches, the architecture illus-
trated in Fig. 2(b)-(c) theoretically can implement arbitrary logic
functions conforming to the expression format presented in (1).
The product term yi, i.e., the logic AND operation, can be imple-
mented by n serially connected reconfigurable optical switches
along single bus waveguides. This block yields logic “1” output
only when all switches are in the “pass” state. Reconfiguration
signals Ri are used to determine whether the corresponding
operand contributes complement logic to yi. In contrast to
electrical digital computing, the OR operation for optical signals
can be directly implemented using a combiner and detected by
a photodetector. It is important to recognize that when product
terms are represented by the same wavelength, the amalgamation
may result in logical errors due to coherent interference. This
issue can be avoided either by using distinct wavelengths for
each branch [66], or equipping each branch with photodetectors
individually [70]. Besides, given that photodetectors operate as

Fig. 2. Reconfigurable PICs for arbitrary combinational logic. (a) Optical
micrograph and cross-sectional diagram of a reconfigurable MRR featuring two
modulation mechanisms. The p-i-n junction is applied by RF signal for input
encoding, while the microheater is connected to the low-speed DC signal for
resonance mode reconfiguration [66]. (b) and (c) Schematic of a PIC architecture
that enables the implementation of arbitrary combinational logic expressions
based on reconfigurable optical switchs (ROSs).

current sources, a straightforward parallel configuration could
achieve electrical OR logic without introducing additional de-
lays. While this strategy offers a general solution for optical
combinational logic, the limited scalability restricts its practical
applicability in scenarios involving numerous operands. For
an n-operands system, the complexity of this processing unit
escalates asO(n · 2n), indicating an exponential increase in the
requisite number of switches withn. Furthermore, issues related
to power consumption and accumulated losses also need to be
considered. The dynamic power of the system Pdynamic can be
expressed as:

Pdynamic =
1

4
αCV 2f (2)

where, α is the activity factor and C is the total capacitance
of the E-O modulators, which increases proportionally with the
number of modulators. It is important to note that while (2) has a
similar expression to that used for CMOS transistors, the supply
voltageV does not necessarily scale with f . Therefore, to reduce
Pdynamic, two straightforward strategies can be considered: 1)
Decrease the number of modulators, for example, by employing
multi-operand logic gates to squeeze logic functions into fewer
devices [68]; 2) Utilize devices with low capacitance, such as
microdisks with capacitance in 10’s fF [24]. Additionally, when
present, thermal tuning typically dominates the power consump-
tion for modulation. This portion of power consumption can be
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Fig. 3. EPALU architecture for high-performance digital computing. (a) Schematic of electronic–photonic microprocessor with its building blocks and data
path. (b) Schematic of an n-2n E-O decoder and 2n-n O-E multiplexer [79], where si refers to the electrical input signal. (c) Schematic of a 2-bit CPA using
E-O logic [61]. (d) Layout of a 2-bit barrel shifter using microdisk add-drop switch array, and the optical datapath with S = ‘01’ [77]. (e) The architecture of the
WDM-based N -bit multifunctional processing unit consists of a (p, g) generation unit (PGU), n sets of m-bit optical carry propagation networks (OCPNs), and
an array of photodetectors (PDs) along with a network of electronic multiplexer units (MUXU) and an electronic sum generation unit (SGU) [24]. With different
input combinations, EPALU can perform various logic/arithmetic functions (right).

reduced or even eliminated through device-level optimization,
such as post-fabrication trimming [71], or using energy-efficient
tuning mechanisms (discussed in Section III-A). The total power
consumption also includes the laser and detection parts, as well
as the potential static power consumption. The laser power is
primarily determined by the losses, typically at the mW level
with dB/cm-level loss, which also correlates with the PIC scale.

In the realm of electrical digital design, electronic design
automation (EDA) tools assist designers by automatically gener-
ating and optimizing circuits from logic expressions, as well as
auto-placing and routing in physical design. With the advance-
ment of PIC-based computing, logic synthesis methods specified
for PIC design have been proposed, enabling large-scale design
automation and optimization of compact PICs for digital com-
puting [72], [73], [74].

C. Toward a Fully-Functional EPALU

Besides the aforementioned advantages of optical logic units,
unique multiplexing techniques play a pivotal role in further

improving computing capacity and performance. An example
is the WDM-based electronics-photonic arithmetic logic unit
(EPALU) (Fig. 3(a)) [24]. The arithmetic logic unit (ALU),
which performs arithmetic and bitwise operations, is an essential
component of modern computing systems. Within ALUs, the
full adder plays a critical role, with its logic being expressed as
follows:

Cn = pn · Cn−1 + gn , Sn = Cn−1 ⊕ pn

gn = An ·Bn , pn = An ⊕Bn (3)

where A, B, and C represent the two operands and carry,
respectively; p and g denote propagation and generation, and the
subscripts indicate the specific bits. Based on these expressions,
the scalable electro-optic carry propagation adder (CPA) has
been developed [61], with the schematic shown in Fig. 3(c). For
a N -bit CPA, the carry output from one stage is the carry input
to the next stage, thus the final result cannot be calculated until
the carry has rippled through all stages. As an optimized archi-
tecture, the carry select adder (CSA) splits N -bit operands into
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nm-bit CPA (N = m× n). It speeds up addition by computing
two possible outcomes for each m-bit CPA simultaneously–
assuming carry-in values of “0” and “1”–and then selects the
correct result based on the actual carry-in using multiplexers
(MUXs) [75]. As a trade-off, CSAs require two sets of circuits
with different carry inputs. However, in the optical domain,
this can be efficiently implemented with a single optical path
in the PIC, where different carry signals are encoded into two
distinct wavelengths using WDM (Fig. 3(e)). Beyond arithmetic
addition, Ying et al. developed that the multifunctional archi-
tecture could perform addition, subtraction, comparison, and
bitwise operations operating at 20 GB/s with various input com-
binations [24]. Based on time-space multiplexing, Zhang et al.
demonstrated a photonic-electronic digital multiplier capable
of processing up to 32 × 4-bit binary inputs at 25 Mbit/s [76].
Additionally, the E-O shifter within the EPALU architecture has
also been experimentally demonstrated (Fig. 3(d)) [77].

From the perspective of computer architecture, the ALU
operates under the directives issued by electronic control units,
with its inputs being fetched from memory. Upon completing a
designated operation, the ALU’s output is then stored back in
memory to be accessed for subsequent computations (Fig. 3(a)).
Although optical computing has significantly reduced the la-
tency of arithmetic operations, data access and E-O/O-E con-
versions can create major bandwidth bottlenecks and serve as
a significant source of energy consumption in the computing
system. Therefore, the exploration of high-speed interconnects
between different modules within an electronic–photonic mi-
croprocessor is important as well [78], [79]. In [79], a decoder
and multiplexer designed for the EPALU architecture have been
demonstrated, achieving data transportation and processing at
a speed of 20 Gb/s (Fig. 3(b)). Another potential approach to
reduce the time and energy costs of E-O/O-E conversion is
through the implementation of various forms of optical memory,
as discussed in [80], [81].

III. PIC-BASED ANALOG COMPUTING FOR AI:
FUNDAMENTALS AND IMPLEMENTATION

Undoubtedly, modern AI, functioning on digital computing
systems, has achieved significant progress in diverse fields and
has even exceeded human performance in specific tasks. With the
advancements in integrated photonics, the PIC platform emerges
as a compelling candidate for AI accelerators. Leveraging the
optical logic gates and computing units detailed in Section II,
some studies have illustrated the capability of PICs to per-
form tensor operations, including accumulation, dot products,
and matrix-vector multiplications (MVMs), for diverse machine
learning applications within the digital domain [82], [83], [84].
These studies have highlighted the inherent advantages of optical
computing in terms of latency, speed, and power efficiency.
However, the digital representation can encounter challenges
stemming from hardware complexity overhead and speed re-
duction caused by the sampling and digitization into binary
streams processed by logic units. These challenges are especially
significant in the context of high-throughput or high-precision
tensor operations for various machine-learning tasks.

Fig. 4. Schematic of an artificial neuron with simple synaptic model.

On the other hand, the human brain, operating as an analog
signal “processor”, is estimated to perform at a rate of 1018

multiply-accumulate (MAC)/s with a power consumption esti-
mated at just ∼10–20 W [85], [86], demonstrating remarkable
efficiency compared to the substantial energy requirements of
cutting-edge AI. This efficiency can potentially be attributed to
the parallel processing capability and reduced precision require-
ments inherent in analog computing. While the mechanisms of
brain function remain incompletely understood, there is growing
interest in incorporating analog computing into machine learn-
ing. Before discussing the details of implementing optical analog
computing for AI, it is helpful to provide a concise overview of
artificial neural networks (ANNs) and the neuron model. The
schematic of an artificial neuron with a basic synaptic model
is illustrated in Fig. 4, where x, y, and w represent the inputs
from the pre-synaptic neuron, post-synaptic output, and weights
of the connection, respectively. The activation functions σ(·),
such as sigmoid, ReLU, and the leaky integrate-and-fire (LIF)
function for SNNs, introduce nonlinearity into the model along
with various engineering considerations [87], [88].

A. Programmable Modulation for Optical Analog Computing

In analog AI accelerators, both inputs x and weights w could
correspond to a higher resolution, in contrast to the binary values
in digital computing circuits. The hardware implementation
of the above process using PICs requires the reconfigurable
programming of network parameters, which relies on the mod-
ulation of optical components. While the weights in a trained
model may remain fixed during the inference process, it is still
necessary to calibrate the network through modulation due to
the fabrication variations of PICs. A number of modulation
mechanisms have been developed, among which tuning the
effective refractive index neff of waveguides is a widely adopted
approach in ONNs.

1) Thermal Tuning Mechanism: Based on thermo-optic ef-
fects, the transmission characteristics of devices can be modu-
lated by changing the neff of waveguide through integrated fila-
ment microheaters. The heat generated by the ohmic microheater
is proportional to the square of the bias voltage. Fig. 5(a) shows
the schematic and transmission curve of a thermo-optic MZI
fabricated by Advanced Micro Foundry [89]. Thermal tuning
demonstrates the adaptability to various devices and substrate
materials, with minimal constraints imposed by the fabrication
process. Furthermore, compared with other mechanisms (espe-
cially for silicon), it can induce large changes in neff within a
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Fig. 5. Modulation techniques of photonic-electronic devices on PICs. (a) Optical micrograph and the normalized transmission curve of a thermo-optic MZI.
Each arm of the MZI incorporates a microheater as a phase shifter [89]. While both arms can be used to modulate the output signal, typically, one is used to
set the modulator output at the quadrature point for a high extinction ratio in monotonic modulation. (b) Schematics and micrographs of free-carrier effect-based
modulators working in carrier-injection mode [110], carrier-depletion mode [95], and by the MOSCAP-driven tuning mechanism [98]. (c) Top, optical micrograph
of an MRR modulator loaded with 10 μm long 20-nm-thick Sb2S3 and doped silicon PIN heater. Bottom, normalized transmission spectra of MRR when switching
between two phases of Sb2S3 [109].

small footprint. However, thermo-optic devices encounter diffi-
culties in achieving high-speed modulation, currently limited to
a few hundred KHz [90], although sufficient for inference tasks
with static weights. Additionally, thermal tuning is a volatile
configuration process, requiring continuous external biasing and
power supply (typically ∼mW level) to hold its functionality.
Another issue arises from thermal crosstalk when heat dispersion
cannot be adequately contained without physical constraints,
such as trenches, which need appropriate consideration in both
schematic and layout design.

2) Field-Effect Tuning Mechanism: Except for the thermo-
optic effect, the neff can also be tuned by electric fields. In
silicon photonics, a straightforward approach involves doping
the silicon waveguide and applying an external electric field to
manipulate the carrier concentration and tune neff. A va-
riety of modulators operating in carrier-injection (forward-
bias p-i-n), carrier-depletion (reverse-bias p-n junction),
and carrier-accumulation (metal-oxide-semiconductor capaci-
tor, MOSCAP) mode have been widely demonstrated (Fig. 5(b))
[91], [92], [93], [94], [95], [96]. These CMOS-compatible mech-
anisms allow gigahertz-level tuning speeds, making them suit-
able for high-speed encoding in ONNs. Particularly, in depletion
mode, the bandwidth is determined by the majority carriers’
dynamics, which are not limited by the slower processes of
carrier generation and recombination [94]. Moreover, while the
depletion-mode modulator remains a volatile device, it exhibits
low static power consumption attributed to the reverse-biased
junction. Compared to thermo-optic devices, the free-carrier
effect-based modulators typically require longer modulation

lengths and larger footprints, primarily due to their lower tunning
efficiencies (as evaluated by voltage-length product VπL) or the
necessity for traveling-wave electrodes for high-speed modula-
tion. Expanding beyond the conventional silicon platform, an al-
ternative approach is the utilization of materials with significant
electro-optic effects–such as the free-carrier plasma dispersions,
the Pockels effect, the Kerr effect, and the Quantum Confined
Stark Effect (QCSE)–for the core or cladding of waveguides.
The modulation efficiency of these devices is intrinsically linked
to the material properties. Prominent examples include III–V
semiconductors [96], [97], [98], lithium niobate [99], and some
polymers [100], [101]. A comprehensive discussion of all these
mechanisms exceeds the scope of this review. Interested readers
are referred to relevant reviews and reports for further informa-
tion [102], [103], [104].

Most modulators discussed above have nonlinear transmis-
sion curves, primarily due to the E-O modulation mechanisms
involved. Although the Pockels effect provides a linear change
in Δn in response to electric field intensity, the inherent transfer
function of the modulator itself can still exhibit a nonlinearity
(such as the sinusoidal response of MZI). To reduce undesired
nonlinearity in computing architectures, several solutions have
been proposed: 1) Introduce a nonlinear mapping during D/A
conversion, although this may necessitate additional data pro-
cessing; 2) Utilize the nearly linear segment of the transmission
curve, at the tradeoff of a reduced modulation dynamic range; 3)
Design PICs that compensate for nonlinearity by novel devices
or modulation mechanisms [100], [105], [106], [107], [108]. Ad-
ditionally, the impact of nonlinearity on system noise also needs
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TABLE I
SUMMARY OF MODULATION TECHNIQUES WITH SILICON WAVEGUIDE

consideration. Within modulators exhibiting strong nonlinearity
and steep slopes, such as high-Q MRRs, slight noise or offsets in
the drive signal can potentially result in significant deviations.

3) Non-Volatile Modulation: Each aforementioned mecha-
nism is a volatile process and requires continuous power supply
even for infrequent or static programming tasks. Non-volatile
phase change materials (PCMs) offer a unique opportunity
to avoid these scenarios. PCMs have two switchable phases,
i.e. amorphous and crystalline states, with drastically different
neff, and can achieve reversible phase transitions within var-
ious temperature ranges. For the PIC platform, heating can
be achieved by an integrated pulse microheater or alterna-
tively, through light signals themselves, enabling ’all-optical’
modulation. Chen et al. developed several non-volatile silicon
photonics modulators with Sb2S3 PCM cladding and experimen-
tally demonstrated 5-bit multilevel programming with a high
cyclability >1600 switching events (Fig. 5(c)) [109]. Besides,
all-optical SNNs using chalcogenide PCM GeSbTe (GST) also
have been reported [32], and more details will be discussed in
Section. III-C2. A brief summary of modulation techniques with
Si waveguide is shown in Table I.

B. Implementations of Photonic Tensor Cores

As illustrated in Fig. 4, the interconnections in ANNs can be
conceptualized as weights akin to synaptic coupling coefficients
in biological systems. This analogy extends to representing these
connections through tensor operations, thereby abstracting the
complex interactions in a computationally manageable form.
Building upon the aforementioned modulation mechanisms,
various active devices and encoding mechanisms have been
utilized effectively in photonic neurons. This section categorizes
ONNs from multiple perspectives, which aims to provide a com-
prehensive analysis and comparison of the implementations of
photonic tensor cores (PTCs) from diverse optical components
to the architectural design.

1) Coherent vs Incoherent ONN: From the viewpoint of
signal properties, ONNs can be classified into coherent and
incoherent systems. Within coherent ONNs, both weights and
inputs can be encoded in the complex plane, allowing multi-
plication through lossless interference. For instance, a pair of
beam splitters and phase shifters in the form of MZIs are widely
adopted for conducting linear operations in coherent ONNs due

to the programmable amplitude and phase response [112]. The
schematic of a 2×2 MZI is shown in Fig. 6(a). Assuming that
each beam splitter is an ideal 50:50 directional coupler (i.e., with
a coupling coefficient κ = 1/

√
2), the transition matrix of the

MZI can be represented as:

TMZI =
1√
2

[
1 j

j 1

]
·
[
e−jφ1 0

0 e−jφ2

]
· 1√

2

[
1 j

j 1

]
(4)

Here, φ1 and φ2 represent the phase changes as signals tra-
verse two arms. In some cases, φ1 and φ2 are denoted as
Δφ = φ1 − φ2 and 0, respectively, given that the response is
predominantly governed by the phase difference between its two
arms. If only one input port receives a signal Ein, the field and
power intensities at the output port can be expressed as follows:

y1 = −j · exp
[
−j
(
φ2 +

Δφ

2

)]
· sin

(
Δφ

2

)
· Ein ;

y2 = j · exp
[
−j
(
φ2 +

Δφ

2

)]
· cos

(
Δφ

2

)
· Ein (5)

|y1,2|2 = |Ein|2 · 1∓ cosΔφ

2
(6)

This implies that the phase and amplitude of output can be
modulated by varying Δφ from 0 to π. The smooth transmission
curve, stemming from the cosine term, enables high-resolution
analog computing and enhances noise resistance. In a notable
case, the two arms are encoded by opposite phase shifts, repre-
sented as φ±Δφ/2 for φ1 and φ2, respectively. When incor-
porated into (4), the Mach-Zehnder modulator (MZM) working
in “push-pull” mode allows for the independent modulation of
field intensity while maintaining a constant phase.

An MZI cascaded with a phase shifter can implement a 2×2
unitary transformation:

U(2) =

Phase Shifter︷ ︸︸ ︷[
e−jθ 0

0 1

]
·

MZI︷ ︸︸ ︷
1

2

[
e−jΔφ − 1 j(e−jΔφ + 1)

j(e−jΔφ + 1) −(e−jΔφ − 1)

]

=
1

2

[
e−jθ(e−jΔφ − 1) je−jθ(e−jΔφ + 1)

j(e−jΔφ + 1) −(e−jΔφ − 1)

]
(7)
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Fig. 6. Various implementations of photonic-electronic tensor cores. (a) Schematic of a 2×2 MZI where the beam splitters can be implemented by multi-mode
interferometer (MMIs) or directional couplers. An alternative configuration of MZI features a single input and output, with the splitter designed as a Y branch.
(b) An MZI-based coherent photonics tensor core for ONNs [28]. The weight matrix can be represented by SVD in the form UΣV †. Due to chip size and
complexity considerations, this work only implements U and Σ on a single pass through the circuit. (c) Schematic and power spectral responses of an add-drop
MRR with power coupling coefficients κ1

2 = κ2
2 = 0.2 (assuming the coupling junctions are lossless, i.e., κ2 + t2 = 1) and 5% round-trip power loss. (d) The

weight bank architecture utilizes MRRs as tunable filters for parallel modulation of WDM signals [122]. The series-connected MRRs share a single bus waveguide
as a through port, while the other waveguide can be shared or independent, enabling the selective addition or removal of wavelengths. (e) Schematic of 4×4 MRR
crossbar array demonstrated in Ref [123]. Input signals are first modulated via MZMs, and then distributed and weighted through the crossbar array, followed by a
photodetector array that sums the weighted WDM elements. (f) The Schematic of an optical tensor core supports dynamic full-range general matrix multiplication
based on WDM and coherent interference [126].

Unitary matrices of rank N can be decomposed into sets of
U(2) blocks, which can be implemented using cascaded 2×2
MZIs to form a mesh structure. Despite the unitary nature of the
transition matrix in an MZI-mesh, an arbitrary weight matrix for
an ONN can be implemented by singular vector decomposition
(SVD). The SVD approach was thoroughly discussed by Miller
et al. in 2003 and first experimentally implemented in ONNs
by Shen et al. as shown in Fig. 6(b) [28], [113]. Specifically,
an arbitrary real-valued matrix M can be decomposed into the
form UΣV †, where Σ is a diagonal matrix and the remaining
two are unitary matrices, which can be implemented with a set
of tunable attenuators and an MZI mesh, respectively.

Another characteristic of the devices based on phase modu-
lation is their broad spectral bandwidth. During the modulation
process, the phase change ψ can be expressed as follows:

ψ =
2πLPSΔneff

λ
(8)

where λ and LPS represent operating wavelength and effective
modulation length. Within the C-band and O-band commonly
used in silicon photonics, the transmission characteristic demon-
strates a low sensitivity to λ over a range of several tens of
nanometers. Particularly for thermo-optic devices, the thermal
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modulation coefficient dneff/dT shows a slight increase corre-
sponding to the increase in wavelength, which compensates for
the decrease in wave number 2π/λ [114]. Therefore, an MZM
followed by a phase shifter can achieve parallel modulation of
multiple signals with different wavelengths based on WDM.
However, it should be noted that waveguides induce different
phase changes at various λ, which must be considered when
using WDM in coherent ONNs.

Thanks to the phase encoding mechanism, coherent ONNs can
perform multiplication with full-range input operands. Besides
the SVD approach, a more intuitive example is that the sign
and absolute value of the scalar can be encoded by the phase
shifter and MZM separately. Following this methodology, [115]
presents a photonic neuron architecture enabling full-range dot
product operations. However, this architecture also faces lim-
itations in terms of complexity and scalability. Specifically,
implementing SVD required a matrix pre-processing step for
phase mapping, which consumes extra time and power. In addi-
tion, the number of MZIs escalates quadratically with matrix
size, leading to scalability issues due to the larger footprint
and accumulated losses. Moreover, the phase control of the
coherence network presents a challenge as well. Within the MZI
mesh, each U(2) operation demands a minimum of two active
phase modulators. Without a reference signal, phase calibration
becomes more complex than amplitude calibration (which can
be straightforwardly measured using photodetectors), especially
considering the fabrication deviation across individual devices
and waveguides. However, some studies demonstrate the feasi-
bility of addressing the phase calibration issue through on-chip
training [116], [117].

Incoherent PICs offer an alternative approach to execute
tensor operations. In the absence of coherence requirements,
an incoherent ONN enables broader flexibility in employing
multiplexing techniques. Because of its wavelength-dependent
transmission characteristics, MRRs are widely employed for
encoding weights and inputs in WDM-based incoherent ONNs.
From the perspective of physical design, the small footprint of
MRR (achieving a radius <10 μm) affords a compact layout
and an enhanced scalability. As shown in Fig. 6(c), the add-drop
MRR is a four-port optical device that consists of a microring
evanescently coupled to two bus waveguides. The transfer char-
acteristics at the through port and drop port can be expressed as
(9) and (10).

Tt =

∣∣∣∣ Et

Ein

∣∣∣∣2 =
t21 + t22α

2
rt − 2t1t2αrt cosφrt

1 + t21t
2
2α

2
rt − 2t1t2αrt cosφrt

(9)

Td =

∣∣∣∣ Ed

Ein

∣∣∣∣2 =
κ21κ

2
2αrt

1 + t21t
2
2α

2
rt − 2t1t2αrt cosφrt

(10)

Here, κ and t represent the field coupling factor and transmis-
sion factor, respectively. αrt = exp(−α · 2πR) and φrt = β ·
2πR are the round-trip field attenuation factor and phase, withα
andβ being the real and imaginary parts of the complex transmis-
sion coefficients [118]. The resonance condition is φrt = 2mπ,
i.e., λres = 2πneffR/m, wherem is a positive integer. A potential
issue in achieving full-range modulation (i.e., from 0 to 1) arises,
as it can only be attained with symmetric, lossless coupling

(αrt = 1, t1 = t2), which is unrealistic for real devices. An
all-pass MRR can be regarded as a special case of an add-drop
MRR, distinguished by the absence of a drop bus waveguide with
t2 = 1 and κ2 = 0 for (9). While the phase at the through/drop
port can also be derived from (9) and (10), the phase response
and tuning range are highly sensitive to coupling conditions
and round-trip loss. Hence, MRRs are primarily employed for
amplitude modulation in incoherent systems. Another challenge
comes from the experimental perspective: MRRs, particularly
those with high quality factors, are sensitive to environmental
factors such as temperature variations and vibrations. For a more
in-depth theoretical analysis of MRRs, readers may refer to
relevant literature and books [118], [119].

In tensor operations, MRRs can be modulated by tuning
coupling coefficients or the round-trip phase [120]. Unlike MZIs,
MRRs demonstrate significant wavelength selectivity. An MRR
with a moderate quality factor can achieve a resonance peak
with a 3 dB bandwidth of a few hundred picometers. The narrow
bandwidth makes MRRs particularly effective as tunable filters
in WDM-based PICs, where they are often arranged in series for
the selective modulation of signals with different wavelengths.
This application is exemplified by the concept of “weight banks”
proposed by Tait et al. [121], [122], as shown in Fig. 6(d). In
this architecture, photodetectors can spontaneously perform the
sum of operands encoded on different wavelengths. Another
incoherent architecture is the crossbar array, which implements
MVMs using its programmable transfer matrix in the form
of a tunable switch array [123], [124], [125]. Ohno, et al.
demonstrated a 4×4 add-drop MRR crossbar array for MVMs
(Fig. 6(e)) [123]. Specifically, each wavelength coming from the
row bus waveguide can be weighted and subsequently directed
into a specific column by the MRR array. The weighted elements
can be collected and aggregated by a photodetector at the end of
the column, thus carrying out MVM.

A notable constraint of incoherent ONNs is the challenge of
directly implementing negative operands due to the amplitude
modulation mechanism. An intuitive solution is dividing the
matrix into positive and negative parts, subsequently mapping
into the network up to 4 times to execute (X+ −X−)(Y+ − Y−),
and thereafter deducting the outcomes within the electrical do-
main. Alternatively, the positive and negative components can
be processed simultaneously through two identical incoherent
hardware networks. Both strategies, however, necessitate ei-
ther extended processing time or increased hardware resources.
Another strategy leverages the complementary output from the
through and drop ports of the add-drop, enabling the full-range
output as demonstrated in the work of Tait et al. [121], [122].
For the last two approaches, the post-processing subtraction can
be physically implemented using balanced photodetectors, as
illustrated in Fig 6(d).

2) Static and Dynamic Weight Encoding: The above-
mentioned architectures topically map one operand of MVMs
(typically a weight matrix W) onto hardware, executing multi-
plication through the transmission matrix of the PIC. Therefore,
the operational speed of an ONN is, in theory, only determined
by the modulation rate of input signals x. However, practical
implementations face several limitations. Primarily, deploying
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MVMs with large dimensions is challenging due to the cost,
complexity, loss, and other scalability issues of PICs. While
multiplexing techniques can enhance the parallelism of ONNs,
time-domain hardware reuse is necessary to fulfill the com-
putational requirements of complex machine learning tasks.
This indicates that the “weight-static” architecture constitutes a
bottleneck for large networks because of the huge gap between
ultra-fast optical computing and slow mapping/reprogramming.
To fully unleash the potential of optical analog computing, the
critical role of dynamic encoding for specific tasks should be
recognized. For dynamically-operated ONNs, two essential re-
quirements must be satisfied. First, the parameters in the network
need to be high-speed reprogrammable for efficient hardware
reuse. This requires that the modulators operate at gigahertz-
level rates, as exemplified by those based on field-effect tuning
mechanisms. Secondly, dynamic operation mandates that pa-
rameter mapping and output reading be conducted “directly”
without additional signal preprocessing or data correction. For
instance, to map a 12×12 matrix to an MZI-mesh framework
requires ∼1.5 ms to perform SVD and phase decomposition on
a CPU [126], which precludes dynamic operation due to the
delay.

The importance of dynamic encoding is further highlighted
by its compatibility with Transformer [9]. Transformer and the
unique attention mechanisms have attracted significant research
interest in recent years due to their exceptional performance in
natural language processing (NLP), machine vision (MV), and
large-scale language models (LLM). Unlike weight-static ar-
chitectures, Transformer employs the multi-head self-attention
(MHA) mechanism within its encoder and decoder blocks, ne-
cessitating matrix multiplication involving two dynamic, full-
range operands. Zhu et al. presented a dynamically-operated
PTC for the first photonic Transformer accelerator, leverag-
ing coherent light interference and WDM [126]. As shown in
Fig. 6(f), the elements within the input vectors x and y are
encoded at distinct wavelengths, and then add a −90◦phase shift
to one vector. Through a directional coupler, two orthogonal
signals can be recombined into the form (x ± y), facilitating the
computation of the dot product via a balanced photodetector.

3) Hardware-Efficient PTCs: For the aforementioned struc-
tures, the total number of optical components required to imple-
ment an m× n general matrix is similar, e.g., m(m− 1)/2 +
n(n− 1)/2 + max(m,n) MZIs for an SVD-based MZI mesh,
and m× n MRRs in microring-based ONNs. In addition to
the high hardware costs and inherent control complexities, the
required electrical components make up a large proportion
of energy consumption, particularly for high-speed and high-
resolution modulation. To address these challenges, researchers
are exploring strategies to enhance hardware efficiency across
multiple levels–from the device to the architecture–to improve
the scalability of ONNs.

Firstly, optical devices or structures featuring compact topol-
ogy have been proposed to reduce PIC footprint and improve
hardware efficiency. Zhu et al. developed an ONN architecture
consisting of two diffractive cells and MZIs exhibiting linear
scaling in relation to input dimensions [127], as shown in
Fig. 7(a). The star-shaped diffractive cell shows the capability of

performing on-chip parallel Fourier transform and convolution
operations. In a similar vein, an ONN leveraging the combi-
nation of WDM and MMIs has been developed and demon-
strates an accuracy of 92.17% on the MNIST dataset. Beyond
waveguide-based PIC, Wang et al. proposed a metasurface-
based processing unit that provides ultra-high throughput for
MVM [128] (Fig. 7(b)). Within the subwavelength structure,
each pair of slots acts as a weight element and connects to the
following layers via in-plane diffraction and interference. For a
specific neural network, the width and length of the slot need to
be designed to map the corresponding weights.

The passive ONNs not only yield smaller footprints and en-
hanced hardware efficiency but also lower power consumption.
However, a significant challenge associated with the passive
task-specific PTCs is their fixed configuration, which can lead
to degraded effectiveness when applied to varying tasks. To
address this challenge, active multi-operand devices present an-
other opportunity to break the fundamental limitation to achieve
high-density tensor operation by squeezing MAC operation
into a single device. Specifically, the execution of the length-k
dot product between input vector xin and weight vector w by
k-operand devices can be represented as follows:

xout = f(w · xin) = f

(
k∑

i=1

g(wi, xi)

)
(11)

where the function f(·) represents the E-O transmission func-
tion, while g(w, x) is related to the encoding mechanism. Here,
w can be encoded using programmable resistances (such as
memristors or PCMs), tunable amplifiers/attenuators, or the
effective modulation length in cases, while xin can be encoded
by electrical signals. The type of multi-operand devices can
either be the modulators mentioned above or based on other
passive optical components such as MMI [129]. Feng et al. first
demonstrated this method experimentally on a 4-operand MZI,
achieving a measured accuracy of 85.9% in SVHN recognition
tasks with 4-bit control precision (Fig. 7(c)). Gu et al. proposed
a compact ONN architecture based on multi-operand MRRs
(MOMRR) [130]. The MOMRR-based ONN supports weight
encoding through two sets of rails, with full-range results carried
out by balanced photodetectors [131]. Additionally, the architec-
ture can be combined with the structured pruning strategy to fur-
ther improve network scalability. Theoretically, multi-operand
optical synapses could execute vector operations with nearly
the same footprint as the single-operand counterparts. However,
the intrinsic nonlinearity and possible crosstalk among operands
could present challenges for training and calibration.

Beyond improvements at the device level, another promis-
ing approach enhances hardware efficiency at the circuit level
by software-hardware co-design approaches. Subspace neural
networks, for instance, sacrifice a portion of matrix repre-
sentability in exchange for fewer parameters instead of imple-
menting universal linear operations or general matrix multipli-
cation (GEMM). The effectiveness of this strategy can extend
to ONNs by trading the universality of weight representation
for higher hardware efficiency. An example is the butterfly-style
PTC [89] (Fig. 7(d)). By parameter pruning, this architecture
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Fig. 7. Implementation of hardware-efficient PTCs. (a) and (b) Schematics of space-efficient ONNs using compact diffractive cell [127] and metasurface
structure [128], respectively. O(I)DFT: Optical (inverse) discrete Fourier transform (c) Diagram of a multi-operand optical neuron, along with schematics of
muti-operand MZI [130] and muti-operand MRR [131]. (d) The general architecture of the subspace ONNs (top), and schematic of 4×4 butterfly-style tensor
core (bottom) [89]. Here, B and P are both unitary matrices and Σ is a diagonal matrix. Here, B and P represent butterfly-style transform unit and projection unit,
respectively (e) Architecture diagram of a delocalized time-integration optical computing system consists of smart transceivers as cloud infrastructure and the edge
client devices [132]. The parameters of the neural network model are encoded using WDM on the cloud side and transmitted to client nodes via a long-haul optical
fiber. The MVMs are carried out in time-integrating of photocurrent generated by the photodetector in the client device.

could be implemented using significantly fewer MZIs with a
scale factor of O(nlogn

2 ) rather than the O(n2) required by an
MZI mesh for GEMM. This study experimentally showcases a
measured accuracy of over 94% on the MNIST hand-written
digits classification task, with up to 7× fewer active optical
components, a 3.3× smaller footprint, and a 5.5× lower latency
compared to conventional MZI mesh. A similar strategy, utiliz-
ing an MRR-based crossbar array to implement block-circulant
matrices, has been demonstrated in Ref [125]. For subspace
networks, the trade-off between hardware efficiency and matrix
representability is an important consideration, and more details
will be discussed in Section V-A.

Beyond the one-shot broadcast architecture, an alternative
method leverages time-domain integration with fewer optical
components to perform MACs [132], [133]. Following this ap-
proach, Sludds et al. developed a delocalized optical computing
system that showcases edge computing capabilities over a span
of 86 kilometers [132]. As shown in Fig. 7(e), the modulated
WDM signals are separated by a passive demultiplexer and then
fed to a set of time-integrating receivers. On the client side,
only one MZM, ADC, and DAC are used, which allows an
ultra-low power assumption of femtojoules per MAC operation.
The photocurrent I(t) generated by the photodetector produces
a voltage across the integrating capacitor C by accumulating
charge, thereby achieving the summation operation, which can

be expressed as (12).

Vout =

∫
I(t)

C
dt ∝

∑
wixi (12)

This strategy sacrifices the speed benefit of optical computing
to achieve a smaller chip footprint and reduced hardware com-
plexity, which enables the use of milliwatt-class edge devices.

C. Implementations of Nonlinearities

Activation functions introduce the necessary nonlinearity into
the network. For PIC-based photonic neurons, the implementa-
tions of nonlinearities fall into two major categories: the optical-
electrical-optical (O-E-O) and the all-optical approach.

1) O-E-O Nonlinearities: The activation function within O-
E-O neurons can be realized most directly by routing the
weighted sum through A/D conversion into digital processing
units, such as CPUs, GPUs, or FPGAs. This process performs
nonlinear operations digitally, and then converts the digital
output back into analog signals that are subsequently fed into
photonic neurons. The primary advantage of this approach is its
extensive transfer ability of existing ANN architectures to the
PIC platform, which also facilitates the implementation of ar-
bitrary activation functions. However, the compulsory A/D and
D/A conversion, along with digital processing, impose latency
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Fig. 8. On-chip implementations of programmable nonlinear activation functions. (a) and (b) Schematics of O-E-O nonlinear units for realization of reconfigurable
activation functions [136], [137], [138]. (c) A PCM-based all-optical spiking neuron [32]. The input spikes are weighted via PCM cells, and the PCM cell on the
MRR could switch the resonate condition when the accumulated power of the postsynaptic spikes exceeds a predefined threshold, thereby controlling the generation
of output spikes.

and power consumption, thereby undermining the efficiency
advantage inherent in ONNs. As mentioned in Section II, the
performance and speed of an optical computing system are
constrained by its weakest link, which in this case is the E-O
interface and the digital processing. Alternatively, nonlinearities
can also occur in the analog domain by leveraging the inherent
nonlinear responses of specific electronic components or analog
circuits [134], [135].

Beyond implementing nonlinearity purely in the electronic
domain, nonlinearity can also be introduced within the E-O/O-E
conversion processes, such as the nonlinear transmission prop-
erties of E-O modulators during encoding. For instance, the
nonlinear part of the cosine term in the MZM transfer function
exhibits similarities to the sigmoid function. This methodology
has been validated on the last two layers of an ONN for the
MNIST classification task in [115], and a similar approach
involving the built-in nonlinearity of MRRs has been proposed
by Gu, et al. [131]. The main advantage of introducing nonlin-
earity in encoding is it does not need extra O-E conversions.
However, since the nonlinearity is entirely contingent on the
transmission characteristics of E-O modulators, this dependency
may pose challenges during the training process. Inappropriate
activation functions, particularly in deep networks, can result in
gradient vanishing or explosion and low training efficiency. To
achieve reconfigurable activation functions, Williamson et al.
introduced a nonlinear unit that converts a small portion of the
optical output into an electrical signal to modulate the original
optical signal (Fig. 8(a)) [136], [137]. This setup offers two

approaches for the electrical part. The first approach converts
the tapped signal into an electrical signal directly, allowing for
moderate adjustments in nonlinearity through varying electrical
biases. The second strategy utilizes reconfigurable lookup tables
controlled by a microcontroller, which enables the generation
of arbitrary nonlinearities and aligns more closely with an
all-electrical approach. Likewise, MRRs can be employed to
realize this methodology. In [138] and [139], activation func-
tions are implemented by modulating a CW probe with the
output from photodetectors (Fig. 8(b)). While this architecture
avoids the loss accumulation issue, it requires an additional
laser source as the probe. In addition to introducing nonlinearity
from E-O modulation, O-E conversion processes, exemplified
by the response of photodetectors, can also serve as the source
of nonlinearity [140]. Nevertheless, these approaches are also
constrained by limited reconfigurability.

2) All-Optical Nonlinearities: Without electrical compo-
nents, all-optical approaches implement activation functions via
the nonlinear response of materials or devices to optical signals.
Several ONNs have been demonstrated using semiconductor op-
tical amplifiers (SOAs) [141], saturable absorbers [142], [143],
and techniques exhibiting excitable behavior [144]. All-optical
nonlinearities can also be achieved by PCMs, such as the
all-optical neuron developed by Feldmann et al. [32]. In this
work, the PCM, functioning as a waveguide cladding, is used to
modulate the pre-synaptic input and govern the resonance state
of MRR, thereby controlling the generation of output spikes
(Fig. 8(c)). Beyond the issues of activation function applicability
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Fig. 9. Optical neural network training methods. (a) Offline training on a
digital platform, such as a GPU, mimics the behavior of analog hardware by
building a physical model of PICs. (b) Physical neural network training, which
utilizes PICs for forward pass and incorporates a differentiable digital model
for backpropagation. (c) In-situ optical neural network training is performed
entirely on photonic hardware.

previously discussed, the implementation of all-optical neurons
faces several other challenges. Firstly, even though extra elec-
trical devices are not required, the substantial power required
to excite nonlinearities does not offer any power consumption
advantages compared to the O-E-O approaches. Additionally,
the fabrication and integration of optical components for all-
optical nonlinearity, such as PCM, excitable lasers, and optical
amplifiers, pose challenges as well. Lastly, since both the control
signal and post-synaptic output are optical signals, a potential
issue exists in distinguishing the response from the control
signals or bias.

D. Optical Neural Network Training

As an analog computing platform, PICs for AI applications
are inherently susceptible to various non-ideal conditions, such
as environmental changes, process variation, and limited control
precision. These factors can decrease inference accuracy and
potentially degrade the signal-to-noise ratio (SNR) of computa-
tions. To mitigate the decrease in accuracy, it is crucial to train
ONNs with careful consideration of non-idealities that may oc-
cur during inference, making it a “circuit-aware” approach will
enhance its noise resilience. The current ONN training can be
classified into two categories: hardware-aware ex-situ training,
which involves training with the help of digital computers, and
on-chip in-situ training.

1) Hardware-Aware Ex-Situ Training: Hardware-aware ex-
situ training offloads the training process to digital computers
and utilizes various hardware-aware training techniques to cap-
ture PIC behavior as precisely as possible during training. One
commonly used technique is noise-aware training [145], [146],
as shown in Fig. 9(a). This approach involves modeling the
behavior of PICs while considering various non-ideal effects.
Subsequently, the PIC model is injected into the training to
reduce the gap between training and real inference. Gaussian
noise is commonly used to model various noise sources in
photonic systems. For instance, shot noise and thermal noise
are modeled using a Gaussian distribution by measuring on-
chip photonic multiplication results and fitting their distri-
bution [132]. In addition to injecting non-idealities into the

training, some work explicitly models the transfer matrix of
photonic neurons and embeds them in the forward computa-
tion pass during training [130], [131]. This injection is crucial
because it introduces a unique nonlinearity term that ONNs
need to be aware of in order to accurately capture the behavior
of photonic neurons. Moreover, in [126], the noisy transfer
matrix is derived and explicitly injected in the training under
some noise assumptions. However, this approach encounters
two main challenges. Firstly, accurately representing all on-chip
non-idealities poses a significant difficulty, and environmental
fluctuations can further affect inference accuracy. Second, the
computational overhead required to model the physical system
accurately can be exceedingly high or even prohibitive, making
the training very slow and costly.

Aware of these challenges, some works advocate for training
optical neural networks directly with non-ideal physical re-
sponses, called physical network training, as shown in Fig. 9(b).
The forward pass is executed on PICs and the loss signal L
is obtained by comparing the physical and intended outputs.
However, a challenge arises during the backward pass due to the
undifferentiable nature of the physical response. To address this
challenge, the idea of adopting a differentiable PIC surrogate
model in digital domain has been proposed [89], [147], [148].
With the differentiable model, the gradient of the loss can be
propagated back with respect to the controllable parameters.
This strategy obviates the need for tedious modeling and analysis
of on-chip noise sources, incorporating the noisy behavior of
photonic chips naturally during training.

2) In-Situ Training: In-situ training aims to perform training
directly on-chip, enabling the inherent consideration of all kinds
of on-chip non-idealities, as shown in Fig. 9(c). This approach
can potentially boost accuracy to the greatest extent by directly
incorporating the real-world behavior of photonic hardware into
the training process.

Although in-situ training is straightforward and ideal, it is
challenging to implement directly on the optical computing plat-
form. Considering an optical neural network layer l, optical com-
ponents execute the linear projectionW l(Φl) complemented by
a digital or analog nonlinear transformation f l. With the input
xl, the forward manner can be defined as,

yl =W l(Φl)xl

xl+1 = f l(yl). (13)

Here, Φl represents the device configurations, which are the
device control variables. For the backward pass, assuming we
can access the gradient of loss over xl+1, ∂L/∂xl+1, we need to
obtain the gradient over input xl and device configurations Φl.
The first step is to obtain the gradient over yl, which could be
prohibitive if the activation function is undifferentiable without
analytical formulations, especially for customized analog activa-
tions. After determining the gradient ∂L/∂yl, the gradients over
inputs and device configurations are defined as W l(Φl)T ∂L

∂yl

and ∂L
∂ylx

T ∂Wl(Φl)

Φl . The challenges of obtaining the above two
items stem from several aspects. First, it requires bidirectional
input support to access the transpose of W l(Φl). Second, one
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Fig. 10. In-situ backpropagation concept of adjoint-variable method [151].
The forward, backward, and sum steps of their backpropagation concept are
shown to derive the gradient with respect to phase parameters θ.

may argue that another optical processor can be used to im-
plement matrix multiplication in the backward pass, thereby
avoiding the need for bidirectional support. However, noise and
precision limitations cause the gradient computation to deviate
from the desired matrix multiplication, thus impeding conver-
gence. Third, obtaining the analytical gradient over the real
device configurations, ∂Wl(Φl)/Φl, can be very complex and
prohibitive, as demonstrated in the case of an MZI-ONN [149].

An adjoint-variable method was proposed theoretically to im-
plement on-chip backpropagation by interfering with adjoint and
forward fields [150]. Recent work has implemented the concept
of in-situ backpropagation within a triangular MZI mesh [151].
As depicted in Fig. 10, the method involves forward and back-
ward signal propagation, followed by gradient calculation. In
step 1 and step 2, the “forward inference” signalx and “backward
adjoint” signal xaj are sent forward, respectively. Then the
“sum” vector x− i(xaj)

∗ is send forward again. The gradient
with respect to the phase variables can be finally obtained.
However, this implementation requires additional power/phase
monitors, faster microcontrollers, and more precise detectors,
which increases hardware control complexity and imposes scal-
ability concerns. Additionally, Ohno et al. attempted to design
an MRR crossbar array capable of implementing matrix multi-
plication between the gradient and the transpose of the weight
matrix [123], which is a fundamental operation in conventional
backpropagation algorithms. While promising, this method has
yet to be demonstrated on-chip. Besides, there is a line of works
on on-chip learning protocols evaluated in simulation, which
will be discussed in Section V-D.

IV. PHOTONIC-ELECTRONIC AI ACCELERATOR: A GLANCE AT

THE ARCHITECTURE LEVEL

Photonic AI computing is experiencing rapid advancements
in both device and circuit-level innovations. To fully harness
the potential of optical computing, it’s imperative to develop
comprehensive systems that combine PIC-based computing
with key auxiliary components, such as memory and datapath

elements. This necessitates architecture-level efforts to translate
circuit-level innovations into practical frameworks suitable for
real-world applications. However, the architecture-level study
of photonic AI accelerators is still in its infancy, and limited
research has been conducted in this direction. Given the signif-
icance of comprehending photonic AI accelerators, this section
provides an overview from an architectural perspective, focusing
deeply on the system components and covering various design
considerations.

A. Fully-Optical Vs. Photonic-Electronic Accelerators

1) Fully-Optical Accelerator: A fully optical accelerator
refers to implementing all operations, including both computa-
tion and necessary nonlinear activation functions, entirely within
the optical domain. Recent works have demonstrated the integra-
tion of optical computation and on-chip nonlinearity [32], [152],
[153], [154]. Fully optical accelerators, although promising high
bandwidth without the power consumption of E-O interference,
still confront significant challenges due to scalability and prac-
tical implementation concerns. Firstly, the on-chip nonlinearity
is not yet a mature scheme with low energy efficiency or flex-
ibility compared to electronics, as discussed in Section III-C2.
Secondly, the significant loss imposes a substantial requirement
for optical power to meet the detection threshold. Additionally,
computation errors will accumulate along the optical comput-
ing layers, deviating the final outcome significantly from the
expected value.

2) A More Practical Paradigm: Photonic-Electronic Accel-
erator: Given the challenges associated with practically imple-
menting all-optical accelerators, the photonic-electronic hybrid
accelerator emerges as a more feasible and competitive photonic
AI solution [155], which is also the key focus in this section.
The current hybrid accelerator setup takes advantage of both
emerging photonics and mature electronics and builds a system
with a tight integration of photonic and electronic integrated
circuits. The intensive tensor operations are executed on opti-
cal parts in the analog domain, while the electronic segment
includes digital memory for data storage and distribution, as
well as essential units for data writing/reading, flow control, and
minor data processing. Combining digital and analog domains
results in a mixed-signal setup, therefore, requiring E-O/O-E,
D/A, and A/D conversions. Although the conversion processes
incur additional power consumption and delay, they also offer
some advantages. For example, the A/D conversion process
can be viewed as a denoising step, as it involves discretizing
the continuous analog signals into digital representations. This
discretization helps filter out noise that is present in the analog
signals, avoiding error propagation.

B. Architecture and Workload Mapping

1) Architecture: The photonic-electronic accelerator can be
classified into two types based on its application, which range
from task-specific accelerators, such as those for CNNs [156],
[157], [158], to general-purpose architectures [126], [159]. De-
spite their varied applications, these accelerators exhibit a sim-
ilar generic high-level micro-architecture, as shown in Fig. 11.
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Fig. 11. The generic photonic accelerator architecture. (a) A high-level repre-
sentation of the full system architecture, including off-chip and on-chip compo-
nents. (b) The architecture representation of a single tile. (c) The details of the
linear computing unit using photonic components. (d) The system architecture
of ADEPT interacting with peripheral components [159].

The figure describes the generic architecture in a top-down
manner, from the top view of an on-chip accelerator to interac-
tion with peripheral devices, such as off-chip dynamic random-
access memory (DRAM). Within the accelerator, the chip node
contains both the photonic and electronic circuits. The photonic
part handles tensor operations, while the electrical component
is responsible for flow management. Each tile is constructed
with multiple PTCs and a shared local static random-access
memory (SRAM) to store data that can be accessed by different
PTCs. The PTC necessitates several digital units to support its
operation, such as the in-buffer and out-buffer for data storage,
ADC, DAC, and the modulator for signal conversion.

Memory: Memory design is a critical aspect of modern accel-
erator design, given that data movement frequently constitutes
the bottleneck of the entire system. This challenge is observed
not only in traditional electronic processors but also in op-
tical processors. [160]. In addition to addressing costly data
movement, the ultra-fast characteristic of photonic computing
requires specialized memory design to accommodate the re-
quirements for high-speed data access.

Several key design considerations can be taken into account
during the memory system design process: 1) Memory hier-
archy: Adopting a memory system with multiple hierarchical
levels is a common strategy to reduce memory access costs and
meet the speed requirements. Previous studies have organized
memory systems from external off-chip DRAM to internal on-
chip SRAM [126], [156], [157], [159], [161]. This progression
typically involves using global SRAM to drive multiple local
SRAMs that store frequently accessed data. For example, Light-
matter has introduced an architecture denominated ADEPT
as shown in Fig. 11(d) [159], featuring separate SRAMs for
activations and weights to accommodate their differing access
frequencies and patterns. Specifically, weight buffers are utilized
to facilitate communication between the large but slow global
SRAMs and the ultra-fast PTCs, enabling parallel programming
of weight blocks. 2) Bandwidth matching: Towards efficient
data transfer, bandwidth matching is critical to ensure that the
memory bandwidth aligns with the requirements of PTCs. One
effective approach is to integrate multiple memory channels,
as demonstrated in Ref [126], [159]. To meet latency demands
and enable efficient transmission of parameter blocks, the large
global SRAM block is partitioned into smaller sub-arrays. This
allows data to be read at brief intervals, aligning actual data
access latency with specified requirements. 3) Data prefetching:
Given the regularity of neural network workloads, future mem-
ory access can be anticipated, allowing for the use of double
buffering to hide data loading latency, as demonstrated in [126].
4) Data reuse: A common approach in photonic accelerators,
known as ’weight static’, explores weight locality to enhance
reuse and minimize data movement.

Optical computation: The fundamental computing primitive
is a single PTC designed to accelerate tensor operations. The
accelerator could integrate multiple PTCs, allowing for task
distribution across multiple cores, thus reducing execution time
and increasing throughput. These multiple on-chip PTCs can be
further organized into tiles, following a modular design principle
where each tile shares associated memory and control logic. Dif-
ferent tiles communicate with each other through router logic,
using network-on-chip or optical interconnect, as demonstrated
in Fig. 11(a).

Digital electronic processing unit: In neural network accel-
eration, various non-GEMM operations are essential, such as
element-wise non-linear operations (e.g., ReLU, GELU, and
sigmoid), reduction operations (e.g., softmax and max-pool),
batch and layer normalization, and element-wise operations
(e.g., bias). Digital electronic processing units are employed for
these tasks due to their higher efficiency. However, to retain
the performance benefits of photonics, it is crucial to match
the high throughput of photonic part, especially considering the
challenges faced by electronic processing units operating be-
yond 2 GHz. Demirkiran et al. proposed to equip each PTC with
vectorized processing units and duplicate logic units internally
to enhance processing speed [159].

2) Workload Mapping: This subsection provides an
overview of how photonic accelerators perform neural network
inference, especially when handling matrix-multiplication-
related workloads. The workload needs to be partitioned and
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scheduled appropriately to map the matrix multiplication to
PICs.

The first mapping method is specific to convolutional lay-
ers, where the mapping honors the sliding window property
of convolution. The sliding of the input feature map through
the kernel can be viewed as a series of dot products between
the kernel matrix and the sliding receptive fields. In [30], the
sliding receptive fields are sent to the photonic accelerator
with a time-wavelength interleaving to enable the multiplication
with kernel weights in a temporal manner. [156], [157] further
cascade multiple sliding receptive fields with the same kernel to
perform an MVM operation. However, this mapping method is
specific to convolutional layers, which limits its generalizability
across non-convolutional workloads.

The alternative mapping approach involves transforming the
tensor multiplication task into a GEMM operation between
two large matrices. This conversion is straightforward for lin-
ear layer workloads. In the case of convolutional layers, the
image-to-column (img2col) technique is commonly employed
to convert them into MVM tasks [162], [163]. Matrix tiling
is required to partition the input matrices into smaller blocks,
and the block-wise multiplication is executed on the photonic
accelerator. However, the scheduling of these small blocks, i.e.,
the order in which these tiles are processed in PTCs, requires
careful design, which is sometimes overlooked in recent optical
computing studies. Dataflow selection has a significant impact
on this scheduling. Currently, many optical computing platforms
constrain dataflow selection to weight-stationary dataflow [28],
[159]. This is because weight programming is often slow and
costly, favoring the weight-static mode. In this scheme, block-
wise weight matrices are kept in the PTC to maximize their
reuse among different input data sizes. However, recent ad-
vancements in dynamically-operated PTC designs, such as those
proposed in [126], [164], have eliminated these restrictions
due to advancements in weight programmability, enabling flex-
ible dataflow selection based on workload requirements. For
example, output-stationary dataflow is employed in [126] to
support attention matrix multiplication, as the matrices have
limited reuse opportunity in this dynamic matrix multiplication
scenario.

V. TOWARD EFFICIENT PHOTONIC AI COMPUTING: A
SOFTWARE-HARDWARE CO-DESIGN PERSPECTIVE

In this review, we have explored the promising potential
of photonics for AI acceleration. As a highly interdisciplinary
field, photonic AI computing requires contributions from various
domains, including device, circuit, architecture, and algorithm
levels. Previous sections have examined a range of efforts from
academia and industry across the device, circuit, and architecture
parts. However, solely focusing on progress at the individual
component level is insufficient to fully unlock the vast poten-
tial of photonic computing. Instead, a holistic approach across
multiple levels is crucial for maximizing the performance of pho-
tonic AI systems, necessitating a software-hardware co-design
perspective.

In this section, we will delve into the key challenges of current
photonic AI systems, specifically in terms of area density, energy
efficiency, noise robustness, and trainability. We will feature rep-
resentative studies that address these challenges through efforts
across multiple levels of the system.

A. Area

1) Issue: The large spatial footprint of PICs is a significant
concern, as optical devices typically have much larger physical
dimensions compared to nanometer-scale transistors, spanning
hundreds or thousands of square micrometers. In this case, PICs
generally have low packing density and are not competitive in
area efficiency. Consequently, it becomes challenging to accom-
modate a large number of photonic components or a large matrix
on a single chip, limiting hardware scalability and compute
density.

2) Co-Design Progress: The concern over area cost has
prompted the development of compact photonic devices and the
advancement of fabrication processes. This, combined with vari-
ous hardware-efficient PTC designs discussed in Section III-B3,
aims to address the challenge of large spatial footprints in PICs.
Beyond the methods focusing solely on device or circuit levels,
researchers are exploring holistic device-circuit-algorithm co-
design efforts in two promising directions: 1) domain-specific
photonic computing engines to trade off between matrix expres-
sivity and hardware efficiency; 2) AI-assisted automatic compact
PTC design.

The first line of focuses on developing domain-specific
photonic computing engines [89], [127], [129], [158], [165],
[166], instead of universal linear units as in previous works,
such as MZI meshes and MRR banks [28], [121]. The over-
parameterization of neural networks has inspired various re-
search efforts exploring the construction of efficient neural
networks beyond conventional GEMM within a restricted ma-
trix parameter space, including low-rank neural networks and
structured neural networks [167], [168]. We refer to such neural
networks with a restricted weight matrix space as subspace
neural networks [89], [125]. Subspace neural networks have
shown considerable improvements in efficiency while main-
taining comparable representability to traditional neural net-
works. The success of efficient subspace neural networks can
be leveraged in ONNs by sacrificing the universality of weight
representation in exchange for higher hardware efficiency. For
instance, Gu et al. proposed to implement an efficient circulant
neural network and devise a novel butterfly photonic architec-
ture with improved area efficiency over previous circuits [165],
[168]. It implements the optical fast Fourier transform (OFFT)
and its inverse (OIFFT), which are used to efficiently perform
circulant matrix multiplication. Gu et al. further extended the
proposed architecture to a trainable transform structure to en-
able the implementation of more matrix transformation [165].
Moreover, to solve the issue of quadratic increase in the number
of MZI devices when supporting larger matrices in an MZI
mesh [28], Xiao et al. applied tensor-train decomposition first
to decompose large over-parameterized weight matrices into
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smaller ones, thus substantially reducing the number of MZI
devices required [166].

Another noteworthy advancement in this field is the explo-
ration of automatic PTC design, departing from the manual
design paradigm. In this approach, the footprint can be in-
corporated as a constraint to enable the automatic generation
of compact PTC. For instance, ADPET introduces the first
automatic AI-assisted differentiable search framework for PTC
topology design [169]. It first constructs a probabilistic photonic
SuperMesh and then employs differentiable optimization in a
huge and highly discrete PTC search space. This framework
adapts to various circuit footprint constraints and foundry PDKs.
The PICs developed using this method demonstrate a substan-
tial increase in footprint compactness, ranging from 2 to 30×
compared to both the MZI mesh and the manually designed
compact butterfly mesh. This automated approach promises to
revolutionize the design process, enabling the creation of more
efficient and compact PTCs for AI applications.

B. Energy Efficiency

1) Issue: Energy efficiency is a crucial metric for evaluating
computing hardware. When assessing the energy efficiency of
photonic AI hardware, especially given its mixed-signal setup, it
is essential to consider the energy costs associated with both the
digital and optical components of the system. Following previ-
ous studies [126], [170], the energy cost of photonic computing
can be broadly categorized into optical costs associated with
performing computation and electrical costs related to loading
operands (X and Y ) and detecting output (O), which can be
expressed as follows:

E = Elaser + Ecomp︸ ︷︷ ︸
compute

+Eload︸︷︷︸
load X

+Eload︸︷︷︸
load Y

+ Edet︸︷︷︸
detect O

Eload = Eread +EDAC + Emod

Edet = EPD +EADC + Eamp +Ewrite. (14)

Here,Eload encompasses the energy costs for memory reading
(Eread), D/A conversion (EDAC), and signal modulation (Emod).
Edet represents the costs of optical signal detection (EPD), signal
amplification (Eamp), A/D conversion (EADC), and the subse-
quent writing of results back to memory (Ewrite).Ecomp includes
other energy costs associated with performing computation,
which could be negligible for a fully passive PIC.

Among all components, the transition between digital and
analog signals presents a significant bottleneck in the system
energy consumption, particularly evident in data movement
(memory-associated cost) and ADC/DAC, as labeled in bold
in (14). This transition can occupy more than 80% of the overall
energy consumption [160], [171], which is different from the
power composition of the optical digital computing outlined in
Section II-B.

2) Co-Design Progress: Device-level advancement
promises straightforward reduction in energy costs in (14), such
as the progress in energy-efficient ADCs [172], efficient optical
modulators, and on-chip laser [173]. However, in this section,
we explore recent advancements beyond the device level, with

TABLE II
COMPARISON OF RECENT APPROACHES ON SAVING SIGNAL CONVERSION

COST, INCLUDING D/A (EDAC), A/D(EADC), E-O(EMOD) ENERGY COSTS

a particular focus on addressing the signal conversion and
memory aspects.

At the circuit and architecture levels, several efforts have been
made to reduce signal conversion and data movement costs,
as summarized in Table II. Optical broadcast is a widely-used
technique that enables spatial sharing of encoded signals [121],
thereby saving on DAC and E-O modulation costs. This ap-
proach has been further extended to a crossbar-style design in
[126] to enable both input and weight to be spatially shared.
Another strategy involves keeping weights static in photonic
devices or employing non-volatile devices to reuse encoded
signals across different inputs temporally. Additionally, lever-
aging spectral parallelism allows for sharing operands among
different inputs. Both approaches can lower the encoding costs
related to DAC and modulation. Time-integration techniques
have been employed to explore analog-domain temporal ac-
cumulation [132], significantly reducing the A/D conversion
frequency and preserving more computations within the analog
domain. Recently, the use of E-O analog memory has gained
attention [161], where analog memory is placed near photonic
devices, and DACs are reused across rows of analog memory,
thereby reducing DAC costs.

At the algorithm level, many studies have adopted low-bit
quantization techniques to preserve accuracy while using low-
precision weights, inputs, and activations. [128], [146], [165],
[175]. This approach can reduce the required DAC and ADC
costs with lower resolution, as well as reduce the memory data
movement cost. Furthermore, the residue number system has
been explored as a method to reduce precision requirements
by achieving high-precision computations using low-precision
components [176].

C. Noise Robustness

1) Issue: Ensuring functional correctness is a fundamental
requirement of computing hardware. However, analog photonic
computing inherently faces robustness challenges due to two
primary factors, as depicted in Fig. 12: 1) Various non-ideal
conditions include process variations, device noises, environ-
mental factors, and limited endurance. 2) Limited precision of
inputs and outputs arises from the finite control resolution and
the substantial overhead associated with high-precision DACs
and ADCs. Unlike low-precision electronics digital computing,
as shown in Fig. 12(a), photonic computing uniquely suffers
from output precision loss in the conversion of analog outputs
back to the digital domain, where the ADC precision is typically
unsatisfactory compared to the output precision. To understand
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Fig. 12. Comparison between (a) the low-precision digital matrix multipli-
cation (MatMul) engine and (b) the low-precision optical MatMul engine. The
optical MatMul engine suffer from various non-idealities during computation
and hold precision loss for both inputs and outputs.

the mismatch between an ADC and output precision, consider a
straightforward scenario in which a photonic computing engine
executes a dot product operation of lengthN . Note that here we
consider an ideal case where the precision constraints are on the
weights and activations, and the photonic computing engine can
be treated as a dot-product engine based on a scalar product.1

The multiplication of aBw-bit signed weight by aBx-bit signed
activation results in a product with Bw +Bx − 2 + log2 N
magnitude bits and one sign bit. Here, the additional log2N
bits of precision stem from the addition of N scalar products.
However, achieving this desired precision often exceeds the
capabilities of affordable ADCs, typically within 8 bits [177].
For instance, a 4-bit weight and 4-bit activation in a length-32
dot product computation would ideally yield an output precision
of 13 bits. The 5-bit overhead underscores a notable differ-
ence between photonic computing and traditional low-precision
arithmetic units like int8 GPU tensor cores where outputs are
preserved in high precision [178], raising a unique precision
issue.

2) Co-Design Progress: Here, we explore efforts to miti-
gate the precision issue and the impact of noise on accuracy.
Regarding precision issues, previous efforts have often drawn
inspiration from quantization, either employing Quanztiation-
aware Training (QAT) [128], [146], [175], [179], [180], or Post-
training Quantization (PTQ) [181]. These approaches enable
neural networks to inherently tolerate low-precision arithmetic,
thereby mitigating the impact of precision limitations. Specif-
ically, Gu et al. first developed the QAT flow by directly opti-
mizing low-precision device control signals in the discretized
space [146]. However, the aforementioned quantization tech-
niques are insufficient to compensate for the computation infor-
mation loss due to the low-precision ADC. This is because errors
occur in each partial result, and they finally accumulate when we
tile a large matrix workload. Some work in analog computing
specifically tune the ADC reference voltage to balance the
tradeoff between dynamic quantization range and solution [182].

1The real case can be more intricate. For example, low precision may be
reflected in device control variables, and photonic computing cannot be easily
treated based on scalar product.

Furthermore, weight and input slicing are proposed as strategies
to manage the trade-off in ADC resolution [183].

For noise mitigation, noise-aware training has emerged as
a widely used technique to enhance resilience [132], [145],
[146]. This approach involves introducing noises and variations
during the training process to enhance the noise resilience of
ONNs. Previous studies have focused on modeling various
noise sources [132], [184], such as dynamic noise, static man-
ufacturing variation, and thermal crosstalk, then incorporated
them into the training process. Furthermore, explicit robustness
optimization terms can be integrated into the training process
to further enhance robustness against noise. For instance, [146]
estimates the noise sensitivity of weights and applies protective
regularization terms to sensitive weights during optimization.
Similarly, Zhu et al. introduced an additional regularization term
on the phase magnitude in an MZI mesh to reduce the crosstalk
concerns [185]. Additionally, knowledge distillation strategies,
as employed in [186], can be employed to guide the optimization
of noisy student ONN models under the guidance of a noise-free
teacher model. This approach significantly enhances the robust-
ness of models against static process variation and dynamic input
signal noises.

However, noise patterns can be highly intricate, rendering
the analysis and modeling of these patterns both challenging
and time-consuming. In response to this challenge, some stud-
ies have explored training ONNs directly with noisy physical
responses from real chips, eliminating the need for explicit
noise modeling [89], [147], [148]. This approach, known as
physical neural network training, has been introduced in detail
in Section III-D. Moreover, on-chip training is another way to
recover accuracy by inherently modeling on-chip noise during
training, which is further explored in Section V-D.

Besides exploring the inherent noise tolerance of neural net-
works, another straightforward direction is to compress the
on-chip noise levels. Specifically, some work advocate employ-
ing device-level and circuit-level design space exploration to
mitigate the impact of process variation and crosstalk [187],
[188]. [179] suggests avoiding frequent reprogramming on PCM
cells by enhancing the similarity of mapping weights to mitigate
early wear-out. Additionally, reducing the number of active de-
vices in PICs can also decrease on-chip noise, as noise-induced
errors typically correlate positively with the number of noise
sources. Therefore, pruning redundant devices [169], or weight
blocks [89], [165], brings significant noise robustness improve-
ment.

D. Self-Learnability

1) Issue: The adaptability or trainability of photonic ana-
log computing platforms is another major challenge in their
practical application. The significance of self-learnability arises
from three main aspects, as shown in Fig. 13. Firstly, on-chip
training enhances the adaptability of optical hardware when
working conditions drift, or when workloads change. Secondly,
the realization of on-chip training can unlock many impor-
tant edge learning applications such as local online learning,
transfer learning, and lifelong learning. Moreover, as discussed
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TABLE III
COMPARISON OF DIFFERENT ON-CHIP TRAINING PROTOCOLS ON GRADIENT ESTIMATION METHODS AND NOTABLE HARDWARE REQUIREMENTS

Fig. 13. The self-learnable ONN paradigm exemplified by a single scalable
ONN on-chip training framework with in-situ gradient calculation [149].

in Section III-D, on-chip training can address robustness is-
sues in-situ and bridge the gap between simulation and real
implementation.

2) Co-Design Progress: Achieving self-learnability on neu-
romorphic photonic processors is indeed challenging due to
various on-chip restrictions, such as inaccessible gradients for
control variables and a lack of full observability for in-situ
light fields. Consequently, there is a demand for developing
hardware-friendly learning algorithms that can operate within
these constraints while maintaining feasibility.

We summarize recent on-chip training protocols, either val-
idated through simulation or real demonstration, in Table III.
Generic gradient-free optimization methods, e.g., evolutionary
algorithms and brute-force device tuning [28], [116], [189],
have been used to optimize on-chip parameters with no gradient
information involved. Nevertheless, these approaches encounter
difficulties when scaling to large-scale models with slow con-
vergence and poor stability. Besides the gradient-free approach,
investigation into the direct feedback alignment (DFA) training
algorithm is further explored in [190] for in-situ training [194],
[195]. DFA propagates errors through fixed random feedback
projections from the output layer to each hidden layer in parallel,
thereby obviating the necessity for the sequential backpropaga-
tion of gradients. Another approach, the adjoint variable method,
was introduced to perform on-chip backpropagation by com-
puting the gradients in-situ with per-device optical field mon-
itors [150], and recent work has experimentally demonstrated
the concept [151]. However, scalability remains a significant
concern due to considerable hardware support overhead, such
as the need for per-device monitoring.

On-chip training protocols based on forward-only zeroth-
order optimization aim to approximate gradients using the finite
difference method, perturbing parameters with small random
values for gradient estimation. Instead of adjusting individual
on-chip parameters separately, Bandyopadhyay et al. proposed a
method that samples perturbations for all parameters and shares
them among all training instances in a single iteration [191].
Similarly, FLOPS, proposed in [192], shares the sampled pertur-
bations among single mini-batches instead of all mini-batches in
the same interaction, showing better convergence than [191]. To
further enhance the scalability of zeroth-order training protocols,
MixedTrain proposed in Ref [193] partitions PICs into passive
and active regions and trains only a small subset of active devices
in each iteration, ensuring the capacity to handle a larger scale
ONN compared to FLOPS. The zeroth-order-based approach
shows the training scale to thousands of MZIs as shown in
[192], [193], while it is still not enough when dealing with
modern-size machine learning models. L 2 ight introduces a
subspace optimization algorithm and develops a method for
in-situ calculation of first-order subspace gradients [149], as
shown in Fig. 13. Additionally, a multi-level hardware-aware
sparse training method is employed to boost training efficiency.
This study demonstrates the first instance of training a million-
parameter-level ONN, showcasing exceptional stability.

VI. OUTLOOK AND CONCLUSION

In this review, we have outlined recent advancements in
photonic-electronic integrated circuits for computing and AI
tasks, covering the progress made at various levels, including
the device, circuit, architecture, and system level, as well as
progress in cross-layer software-hardware co-design strategies.
However, more technical challenges need to be addressed in the
future to enable the practical application of photonic computing.
Here, we point to possible research directions.

1) Device/new Material Innovation: As highlighted in this
review, the characteristics of optical components directly im-
pact the performance of photonic-electronic computing sys-
tems. Recent research in emerging materials and novel devices
provide new opportunities for enhancing the performance of
PICs from the device level. For instance, heterogeneous modu-
lators, leveraging technologies such as III-V MOSCAP and 2-D
materials [98], [111], demonstrate high modulation efficiency,
gigahertz-level cut-off frequencies, and sub-picojoule-per-bit
power consumption, allowing a compact layout with high energy
efficiency. Additionally, dataflow management in PIC-based
computing, which includes both digital and analog systems,
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primarily depends on electrical memory due to the lack of
equivalent components in the photonic domain. Previous studies
have demonstrated that non-volatile materials and devices have
the capability to store data, including pre-trained weight param-
eters [32], [124]. Significantly, non-volatile photonic memory,
in contrast to conventional electronic memory, serves not only
as a data storage solution but also functions as a computa-
tional unit for ‘in-memory’ computing. Nevertheless, due to
the limited switching frequency of current non-volatile mate-
rials, such as PCMs, scenarios requiring dynamic data reading
and writing (particularly in high-performance digital processing
units) demand high-speed, reconfigurable materials for optical
memory.

Beyond the innovation in optical components for computing
reviewed in Section III-B3, optimizing other aspects of PICs
also presents significant interest. Potential research directions
encompass, but are not limited to 1) on-chip light sources
to eliminate the complex fiber packaging and alignment pro-
cesses; 2) integrated frequency combs as WDM sources [124];
3) customized nonlinear units for on-chip implementation of
programmable activation functions; and 4) efficient ADC/DACs
and photodetectors, specifically designed for optical computing
architectures [196].

2) Advanced Photonics and Electronics Integration: PICs
for computing require on-chip interfacing with diverse elec-
tronic components, including signal conversion circuits and
control systems, leading to substantial data communication
between the electronic and photonic parts. Currently, wire-
bonding is a widely adopted strategy for E-O interconnects
in academia. This method is particularly convenient and cost-
effective for small-scale networks with few active devices,
as it requires only the routing of driving signals to the
edges of photonic chips, followed by connections to periph-
eral electronic units via wire bonds. However, as PICs scale
up, managing metal wire routing within constrained chip ar-
eas presents a challenge. The beachfront bottleneck of pho-
tonic chips and electrical control units restricts the number
of connections that can be implemented due to the limited
chip perimeter. Furthermore, wirebonding can constrain the
bandwidth of high-frequency devices owing to impedance
mismatch.

To address this interconnect challenge, advanced integra-
tion methods can be employed, aiming to reduce interconnect
complexity and improve overall system performance [197].
Flip-chip bonding directly connects two dies by soldering or
using conductive bumps to align matching electrical pads on
their surfaces. This approach allows flexible floorplanning and
pad placement beyond chip edges, enabling higher interconnect
density and reducing parasitic impedance. Given the fabrication
process and chip sizes, typical integration strategies involve
flip-chip bonding single or multiple heterogeneous dies (such as
ADC/DAC, memory, microcontroller, FPGA, ASIC, etc.) onto
a photonics chip which also serves as an interposer. However,
this approach will invariably introduce large temperature excur-
sions on the PIC varying with the workload. To address this
issue, one strategy involves developing temperature-resilient
photonic platforms [198]. Additionally, the heat spreader and

through-silicon via (TSV) technique enables more flexible ther-
mal management within chips [33], [199], [200], [201].

Monolithic fabrication processes that integrate both photonic
and electronic components on a single substrate also have shown
promising results [202], [203]. While this technology enables
higher integration levels, bandwidth, and energy efficiency, sig-
nificant potential remains for the optimization of fabrication pro-
cesses, improving yield, and the development of comprehensive
PDKs. Besides, further breakthroughs, such as integration with
more advanced CMOS nodes and 2.5-D/3-D electro-optical inte-
gration, are anticipated to enhance the performance of photonic
chips.

3) Scale to Large Models and Advanced Tasks: Photonic
computing still faces challenges concerning scalability when
moving to support large models. Several directions can be
explored. First, the continued exploration of domain-specific
PTCs which trade universality for higher scalability, as indicated
by previous research efforts [89], [127], [129], [158], [165],
[166]. Second, there exists a substantial potential to further
improve computational density by engineering tailored, com-
pact photonic devices, such as multi-operand modulators and
metasurface-based devices. Third, the exploitation of the unique
characteristics of photonics, such as wavelength, time, or mode-
division multiplexing, can enable the reuse of hardware for a
higher degree of parallel operations. Lastly, the development of
a deep understanding of the workload of evolving machine learn-
ing models is crucial for designing suitable PICs. For instance,
attention-based Transformer models introduce dynamic matrix
multiplication, challenging previous PTC designs optimized
for CNNs. Recent advancements propose dynamically-operated
PTC design to handle dynamic matrix multiplication efficiently,
ensuring optimal performance across diverse AI applications.

4) On-Chip ONN Training Protocol: The mainstay of ONN
training predominantly relies on simulation, while existing on-
chip training experimental demonstrations remain at a small
scale with notable overheads. A stable and efficient on-chip
training scheme is highly coveted, necessitating breakthroughs
in both hardware and training algorithms. These breakthroughs
may include innovations such as light-field-driven nonvolatile
materials and advancements in training algorithms.

5) Cross-Layer Co-Design and Electronic-Photonic Design
Automation (EPDA): Cross-layer efforts open up additional op-
portunities to optimize the performance of ONNs, as discussed in
Section V. With the growing complexity of photonic-electronic
hardware platforms, exploring EPDA becomes critical for en-
hancing productivity and efficiency, such as exploring auto-
matic circuit layout generation and fast photonic circuit sim-
ulation [204].

6) System-Level Simulator: As a multidisciplinary emerging
area, it is crucial to have a comprehensive simulator framework
for evaluating the performance of optical computing systems.
Ideal simulators should support seamless integration of new opti-
cal hardware, offer automatic algorithms for hardware mapping,
and provide evaluation of chip-level performance. Such tools
will facilitate fair and straightforward evaluation across different
optical circuit designs, helping identify system bottlenecks and
guiding further optimizations.
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7) Optical AI Software Stack: Developing specialized com-
pilers and instruction sets tailored for photonic computing archi-
tectures is necessary to enable the integration of novel optical
hardware into the mainstream AI software stack, as envisioned in
[205]. While existing deep learning frameworks such as PyTorch
and TensorFlow can still serve as the front end, the compiler
component must be adapted to generate machine code optimized
for the unique photonic accelerators. This ensures efficient
utilization of the optical hardware. Moreover, we anticipate
open-source efforts in this direction to facilitate the progress
of the optical AI software stack.

In conclusion, photonic-electronic integrated circuits stand
out for their exceptional advantages in computing–in terms of
low latency, high bandwidth, and energy efficiency–and exhibit
a high potential to overcome the insurmountable bottlenecks
of electronic computing. Nevertheless, whether for digital or
analog computing, the PIC scale of reported work remains
limited, and further improvements in scalability are essential.
Continuous research should aim to enhance throughput via inno-
vative devices, architectural improvements, specialized training
algorithms, and hardware-software co-design strategies. Addi-
tionally, efforts should focus on reducing power consumption
and the costs associated with the E-O interface, in order to rival
the performance of state-of-the-art electronic computing sys-
tems. This ambition, however, does not imply that the objective
of optical computing is to surpass digital-electronic processors
in all metrics and replace them. From an industry perspective,
optical computing needs to identify niches where it excels over
its electronic counterparts. A promising short-term application
involves leveraging the high parallelism of optical computing
to develop MVM processing units and accelerators for neural
networks, an area that has been extensively studied. If the PIC
scale can be well aligned with its tasks (including considerations
for multiplexing), and use an efficient E-O interfaces, then op-
eration at a rate of one MVM per nanosecond could be achieved
and offer significant advantages in high-throughput applications.
With sustained innovation and effort, integrated photonics is
poised to become a pivotal emerging technology, satisfying the
escalating societal demand for high-performance computing and
hardware acceleration in AI applications over the long term.
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