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Abstract: Optical neural networks (ONNs) are promising

hardware platforms for next-generation neuromorphic

computing due to their high parallelism, low latency, and

low energy consumption. However, previous integrated

photonic tensor cores (PTCs) consume numerous single-

operand optical modulators for signal and weight encod-

ing, leading to large area costs and high propagation loss

to implement large tensor operations. This work proposes

a scalable and efficient optical dot-product engine based

on customized multi-operand photonic devices, namely

multi-operand optical neuron (MOON). We experimentally

demonstrate the utility of a MOON using a multi-operand-

Mach–Zehnder-interferometer (MOMZI) in image recogni-

tion tasks. Specifically, our MOMZI-based ONN achieves a

measured accuracy of 85.89 % in the street view house num-

ber (SVHN) recognition dataset with 4-bit voltage control

precision. Furthermore, our performance analysis reveals

that a 128 × 128 MOMZI-based PTCs outperform their

counterparts based on single-operand MZIs by one to two

*Corresponding author: Ray T. Chen, Microelectronics Research Center,

The University of Texas at Austin, Austin, TX 78758, USA; Department of

Electrical and Computer Engineering, The University of Texas at Austin,

Austin, TX 78705, USA; and Omega Optics, Inc., 8500 Shoal Creek Blvd.,

Bldg. 4, Suite 200, Austin, TX 78757, USA, E-mail: chenrt@austin.utexas.edu

Chenghao Feng, Microelectronics Research Center, The University of

Texas at Austin, Austin, TX 78758, USA; and Department of Electrical and

Computer Engineering, The University of Texas at Austin, Austin, TX 78705,

USA. https://orcid.org/0000-0002-0751-7681 (C. Feng)

Jiaqi Gu, Department of Electrical and Computer Engineering, The Uni-

versity of Texas at Austin, Austin, TX 78705, USA; and School of Electrical,

Computer and Energy Engineering, Arizona State University, Tempe, AZ

85287, USA

Hanqing Zhu, May Hlaing, Jason Midkiff and David Z. Pan, Depart-

ment of Electrical and Computer Engineering, The University of Texas at

Austin, Austin, TX 78705, USA

Shupeng Ning, Rongxing Tang and Sourabh Jain, Microelectronics

Research Center, The University of Texas at Austin, Austin, TX 78758, USA

order-of-magnitudes in propagation loss, optical delay, and

total device footprint, with comparable matrix expressivity.
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1 Introduction

Optical neural network (ONN) is an emerging analog arti-

ficial intelligence (AI) accelerator that leverages properties

of photons, including low latency, wide bandwidth, and

high parallelism [1]–[3], to address the growing demand

for computing power required to implement deep neural

network (DNN) models. Once weight parameters are set,

photonic integrated circuits (PICs) can perform tensor oper-

ations with near-zero energy consumption at the speed of

light [4], [5], making them an ideal platform for acceler-

ating multiply-accumulate (MAC) operations [6]. However,

the potential massive parallelism and ultra-high comput-

ing speed of ONNs are not fully unleashed with small-size

photonic tensor cores (PTCs). To maximize the performance

benefit of photonic computing in DNN acceleration, scal-

able and efficient photonic tensor core designs are in high

demand.

The scalability of previous photonic tensor core designs

is bottlenecked by the large spatial footprint and insertion

loss [7]. For instance, anMZI-based coherent PTC [8] require

O(m2 + n2) single-operand MZI modulators to construct an

m × nmatrix, consuming huge area cost to implement large

tensor operations (e.g., 128 × 128). Moreover, the large num-

ber (∼2n) of cascaded optical devices in the critical path of
the circuit leads to unacceptable insertion loss. Even with

low-loss MZIs such as thermo-optic MZIs (0.5–1 dB) [9], cas-

cading 128 such deviceswill result in 64–128 dB propagation

loss. In addition, single-operand-device-based PTCs suffer

from nontrivial dynamic energy consumption to reconfig-

ure weight parameters. Given the limited chip area and link

budget, we have to serialize the matrix multiplication by

repeatedly reusing small-size photonic tensor cores, which

incursmuch longer latency to implement onematrix-vector
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multiplication, potentially negating the speed advantage of

ONNs over electronic analog AI accelerators [10].

Both circuit- and device-level optimizations have been

explored to enhance the scalability of ONNs. Circuit-level

approaches, such as the butterfly-style circuit mesh [11],

have been explored to reduce hardware usage [12], [13].

Moreover, compact device-level photonic tensor cores, such

as star couplers and metasurfaces [14], [15], have been

proposed to significantly reduce the device footprint and

improve the hardware efficiency of tensor operations. How-

ever, one major challenge with compact photonic circuit

mesh or passive device-level tensor cores is their limited

matrix representability, which usually results in accuracy

degradation when implementing complicated AI tasks. To

address this challenge, we suggest using active device-

level photonic tensor cores, which offer the potential to

achieve both high representability and high hardware effi-

ciency. Recently there has been a trend to usemulti-operand

devices for vector operations, which shows great potential

to achieve efficiency and scalable breakthroughs [16]. In

multi-operand devices, we partition the phase shifter into

multiple small segments, each being independently con-

trolled. By leveraging the underlying device transfer func-

tion, we can then realize vector operations with nearly

the same device footprint and tuning range as the single-

operand one. In this work, for the first time, we officially

name this photonic structure a multi-operand optical neu-

ron (MOON). Prior work has proposed a microring-based

MOON and showed its advantages over standard single-

operand micro-ring in neuromorphic computing through

simulation [16]. In this work, we introduce a new broad-

band device in this MOON-family, a multi-operand MZI

(MOMZI), and experimentally demonstrate its superior effi-

ciency and scalability for next-generation photonic neuro-

morphic computing.

In this work, we customize a MOMZI, whose modu-

lation arm is controlled by multiple independent signals,

and leverage its transmission to realize vector-vector dot-

product. A k-operand (k-op) MOMZI can be used as a length-

k vector dot-product engine, directly saving the MZI device

usage by a factor of k compared to single-operand MZI

arrays [8]. Note that the MZI device footprint and tuning

range keep constant and will not scale with k. By comb-

ing the result from multiple k-op MOMZIs, we can effi-

ciently scale up to operationswith a large vector lengthwith

near-constant insertion loss. Using devices from foundry

process design kits (PDKs) [17], 128 × 128 photonic ten-

sor cores based on our MOMZIs show a 6.2× smaller total

device footprint, 49× lower optical delay, and>256 dB lower

propagation loss than previous single-operand MZI arrays

[8]. We experimentally demonstrated the representability

and trainability of an ONN constructed by 4-op MOMZIs on

the street view house number (SVHN) recognition task [18],

achieving ameasured accuracy of 85.89 %with 4-bit voltage

control precision. Our proposedMOMZI-basedphotonic ten-

sor core enables the implementation of high-performance

and energy-efficient neuromorphic computing with a small

device footprint, low propagation delay, and low energy

consumption.

2 Multi-operand optical neurons

A typical photonic tensor core to implement MAC opera-

tion is in Figure 1(a), which contains photonic components

to generate input signals, the weight matrix, and the out-

puts. n high-speed modulators are needed in an n-input,m-

output layer. Depending on the weight mapping approach,

one needs
m(m−1)+n(n−1)

2
+max(m, n) [8] orm × n active pho-

tonic components [19] to implement am × nweight matrix.

Furthermore, ∼2n active devices are cascaded in one opti-

cal path, resulting in non-negligible propagation loss and

requiring more laser power to drive the photonic neural

chip.

In this study, we propose a novel approach to reduce

the optical component usage by implementing the multiply-

accumulate (MAC) operation using an array of multi-

operand-modulator-based optical neurons (MOONs), as

shown in Figure 1(b). Depending on the area and relia-

bility concerns, one MOON can be a multi-operand active

photonic device of any waveguide structure, such as MZI

modulators and microring modulators. As illustrated in

Figure 1(c) and (d), each row of the layer is divided into

n∗ = n

k
k-operand modulators, and the output of each

k-operand modulator is accumulated using on-chip com-

biners or multiplexers to compute the final output of each

row. Consequently, the total number of MOONs required for

an n-input, m-output layer is
mn

k
, significantly reducing the

number of active optical components.

Unlike conventional PTCs designed for general matrix

multiplications (GEMMs), the nonlinear transfer function

between the electrical signal and the transmission of the

MOON needs to be considered when training DNN mod-

els. The input vector xin is encoded as the amplitude of

the optical signals and will also be partitioned into n∗ = n

k

length-k segments xin =
(
x
1
in
, x2

in
,… , xn

∗

in

)
. Each segment is

encoded on one MOON to implement one k-length vector-

vector inner product. Thus, the output signals of one layer

can be expressed as follows:
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Figure 1: General architecture of the MOON-based photonic tensor core. (a) A conventional photonic tensor core based on single-operand

modulators, which has an array of input modulators and O(mn) photonic devices to construct the weight matrix. (b) Schematic of the MOON-based PTC

to implement an n-input,m-output layer. (c) Shows the diagram of using n∗ = n

k
k-operand MOONs to implement a length-n vector operations,

and its circuit structure is shown in (d). In each MOON, the weight signals and input signals are operated simultaneously on each operand. The scalar

multiplication and partial accumulation are implemented during electrical-to-optical (EO) conversion. The output is obtained by accumulating the

output signal of each MOON using multiplexers and photodetectors. (e) Schematic of a k-operand MOMZI-based MOON, which consists of k operands

on each arm. There are various approaches to encoding weight signals𝑤i and input signals xi on each modulation region (operand). To realize

𝜙i = g(𝑤ixi) on MOMZI-based MOON, one can use (f) programmable resistances to encode𝑤i and current signals to encode xi , or (g) tunable

amplifiers/attenuators to encode𝑤i and voltage signal to encode xi , or (h) adjust modulation length to encode fixed𝑤i and voltage signals

to encode xi .

x
′
out

=  (W , xin) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∗∑
i=1

f

(
k∑
j=1

g
(
W1, j+(i−1)k, x

j+(i−1)k
in

))
n∗∑
i=1

f

(
k∑
j=1

g
(
W2, j+(i−1)k, x

j+(i−1)k
in

))
...

n∗∑
i=1

f

(
k∑
j=1

g
(
Wm, j+(i−1)k, x

j+(i−1)k
in

))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(1)

where function f (⋅) represents the relationship between the
total phase shift or amplitude response of all the operands

and the optical output signal of each MOON, whereas

g
(
𝑤i, xi

)
is determined by the weight/signal encoding way

and each operand’s phase/amplitude response. In this work,

we use g
(
𝑤i, xi

)
= g

(
𝑤i∗xi

)
, where we encode Vi = 𝑤i ⋅

xi as the operating voltage on each operand.  (∙) is the
output result of the layer with weight and input signals

W and xin. The mechanism of the MOON-based PTC is

shown in Figure 1(c). As depicted in Figure 1(f)–(h), 𝑤i can

be encoded by programmable resistances (e.g., memristors

or phase change materials [20]), tunable electrical ampli-

fiers/attenuators, or the length of modulation arms if the

weights are fixed. xi refers to the input current or volt-

age signals from input sources or the previous layer. After

obtaining the transfer function of MOON (Eq. (1)), one can

deploy them in commercial deep learning platforms, e.g.,

Pytorch, to train MOON-based PTCs.

Our MOON-based PTC significantly improves computa-

tional efficiency compared to previous GEMM-based PTCs

[8]. A k-operand MOMZI has a similar device footprint and

dynamic tuning range to a single-operand MZI, but it can

implement k MACs. This outperforms a single-operand MZI

in area- and energy- efficiency since it can only perform

approximately one MAC operation per MZI device in single-

operand MZI-based PTCs. To be more specific, if the total

dynamic phase tuning range is ΣΔ𝜙 = 𝜋, a single-operand

MZI with a length-L0 phase shifter is the same with a k-op

MOMZI with k length-
L0
k
phase shifters in the phase tuning

region’s area, which dominates high-speed MZI’s footprint.

Moreover, the phase-tuning range of each operand is
𝜋

k
,

hence, the energy consumption of a k-opMOMZI is the same



2196 — C. Feng et al.: Multi-operand optical neurons

as that of a single-operand high-speed MZI. One only needs

k − 1 additionalwaveguides to connect the operands,whose

footprints are negligible compared to active phase shifters.

The advantage of MOONs lies in their ability to perform

multiple MAC operations using a single MZI device, making

them more computationally efficient than previous ONNs.

Moreover, as shown in Figure 1(d), only one MOON is

cascaded in one optical path of our circuit architecture,

resulting in much smaller propagation loss compared to

MZI-based or microring-based ONNs, where 2n+ 1 MZIs

or n microrings are cascaded. As a result, we can deploy

compact but lossy optical modulators, e.g., plasmonic-on-

siliconmodulators [21], asMOONs in our PTC, trading higher

insertion loss for a much smaller chip footprint and lower

modulation power. Detailed performance evaluations will

be provided in our discussions.

3 Multi-operand-MZI-based optical

neural network

In this work, we demonstrate the use of k-operand MZI

modulators as the fundamental building blocks for con-

structing ourMOMZI-PTC. Figure 1(e) shows the structure of

a MOMZI. Unlike the traditional MZI modulators with one

or two phase modulators, a k-op MOMZI has k active phase

shifters on each modulation arm, and each phase shifter is

controlled by an independent signal. This structure is simi-

lar to lumped-segmentMZIs used in optical communications

[22], but the driving signals on each operand are indepen-

dent and analog. For MZI modulators with dual modulation

arms, the total number of operands can increase to 2k to

enable both positive and negative phase shifts. Suppose

each shifter contributes to a phase shift𝜙i, the output inten-

sity of a MOMZI can be expressed as:

yi = f
(∑

𝜙i

)
= f

(
k∑
i=1

𝜙
+
i
−

k∑
i=1

𝜙
−
i

)

= cos2

⎛⎜⎜⎜⎜⎝
k∑
i=1

𝜙
+
i
−

k∑
i=1

𝜙−
i
+ 𝜙b

2

⎞⎟⎟⎟⎟⎠
= 1

2
cos

(
k∑
i=1

𝜙
+
i
−

k∑
i=1

𝜙
−
i
+ 𝜙b

)
+ 1

2

(2)

where f (⋅) = cos2
(

⋅
2

)
, 𝜙+

i
denotes the ith phase shifters on

the upper arm of the modulator, and 𝜙−
i
denotes that on

the lower arm. Consequently, positive weight signals are

encoded on upper modulation arms, while negative weight

signals are encoded on the lower ones. 𝜙b is the phase bias

whenno input signals are operated on themodulation arms,

which is used to tune the transfer function of the MOMZI.

The modulation mechanism of the MOMZI plays a criti-

cal role in determining their transfer functionwith an input

voltage signal. As shown in Figure 2, the transfer function

of MZI modulators using the same foundry [17] can exhibit

sinusoidal, quadratic (linear field intensity response), or

other nonlinear transfer functions with the operating volt-

age V . The specific shape of the transfer function depends

on the modulation mechanism (𝜙±
i
(V)) and the modulator’s

waveguide structure ( f (⋅)). By optimizing these parameters,
one can customize the transfer function of the MOMZI to

realize certain nonlinear activation functions of DNNs. We

will discuss this hereinafter.

Supposing the dot product information 𝑤i ⋅ xi is

directly encoded as the operating voltage Vi on each

operand of the MOMZI, we can rewrite Eq. (2) as Eq. (3):

x
′
out

= 
(
W , xin

)

= 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∗∑
i=1

(
cos

(
k∑
j=1

𝜙(W1, j+(i−1)kx
j+(i−1)k
in

)+ 𝜙
1,i

b

))
n∗∑
i=1

(
cos

(
k∑
j=1

𝜙(W2, j+(i−1)kx
j+(i−1)k
in

)+ 𝜙
2,i

b

))
...

n∗∑
i=1

(
cos

(
k∑
j=1

𝜙(Wm, j+(i−1)kx
j+(i−1)k
in

)+ 𝜙
m,i

b

))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ b

(3)

Figure 2: Transfer function of different MZI modulators under different

modulation mechanisms. All the data are experimental data from our

measurement or the process design kit (PDK) model [17] on Lumerical

interconnect. V range is the maximum allowed operating voltage.
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In Eq. (3), positive or negative phase shifts are achieved

by applying the operating voltages to each phase shifter’s

upper or lower arm. The phase bias 𝜙
p,i

b
of the ith MOMZI

on row p of MOMZI-PTC can be adjusted to improve the

expressivity of our neural architecture. The constant b = n

2k

can be eliminated after photodetection. Using Eq. (3) we can

model the MOMZI on commercial deep learning platforms,

e.g., PyTorch, making it practical to train and deploy the

DNN.

4 Experimental results

In this study, we designed and fabricated a 4-op MOMZI

that is capable of implementing a 4 × 1 vector opera-

tion on the silicon photonics platform. This experimental

demonstration aims to investigate if the actual performance

of MOMZI devices is trainable and learnable to perform

deep learning tasks. Additionally, the essential components

required for the deployment of MOMZIs in PTCs, including

DACs with tunable gains, on-chip combiners, and electrical

control circuits, are readily accessible through established

foundry services and existing technologies. This paves the

way for future large-scale integration of MOMZI-PTCs. The

chip layout was drawn and verified using Synopsys OptoDe-

signer (version 2021) and then fabricated by AIM Photonics.

The schematic of the MOMZI is illustrated in Figure 3(b),

while Figure 3(a) shows close-up images of its components,

including phase shifters, 50–50 directional couplers, and

photodetectors.

We use two phase shifters on each modulation arm to

enable both positive and negative weights during training.

Themaximumoperating voltage isVmax ≅ 1

2
V𝜋 as the tuning

range of each phase shifter is∼ 𝜋

4
. If adjustable modulation

length is allowed in foundries, it is suggested to reduce the

length of each operand by 4× to minimize the 4-opMOMZI’s

device footprint. In experiments, we encode 𝜙i ∝ 𝑤
±
i
⋅ xi,

where𝑤+
1
and𝑤+

2
are positive weights and𝑤−

3
and𝑤−

4
are

absolute values of negative weights,𝑤1 and𝑤2 are encoded

on the upper arm, while 𝑤−
3
and 𝑤−

4
are encoded on the

downer arm. The transfer function of our modulator can

then be written as:

T = f

(∑
i

𝜙i + 𝜙b

)
= cos2

[(
𝜙1

(
𝑤

+
1
⋅ x1

)
+ 𝜙2

(
𝑤

+
2
⋅ x2

)
− 𝜙3

(
𝑤

−
1
⋅ x3

)
− 𝜙4

(
𝑤

−
2
⋅ x4

)
+ 𝜙b

)
∕2

]
= 1

2
cos

[
𝜙1

(
𝑤

+
1
⋅ x1

)
+ 𝜙2

(
𝑤

+
2
⋅ x2

)
− 𝜙3

(
𝑤

−
3
⋅ x3

)
− 𝜙4

(
𝑤

−
4
⋅ x4

)
+ 𝜙b

]
+ 1

2
(4)

We tune one additional phase shifter on the upper arm

to let 𝜙b ≈ 𝜋

2
to obtain a relatively linear and balanced

output range. Themodel to implement a length-n vector dot-

product with our 4-op MOMZI can be derived from Eq. (3)

and Figure 1(c):

T =
n∗∑
j=1

f

(∑
i

𝜙 j,i + 𝜙b

)

= 1

2

n∗∑
j=1

(
cos

[
𝜙j,1

(
𝑤

+
4j−3 ⋅ x4 j−3

)
+ 𝜙j,2

(
𝑤

+
4j−2 ⋅ x4 j−2

)
− 𝜙 j,3

(
𝑤

−
4 j−1 ⋅ x4 j−1

)
− 𝜙 j,4

(
𝑤

−
4 j
⋅ x4 j

)])
+ n∕8

(5)

where n∗ = n

4
. The accumulation operation can be real-

ized by on-chip combiners ormicroring-basedmultiplexers,

which have been widely used in previous PTC works [4],

[19].

The schematic of the testing setup is illustrated in

Figure 4. Continuous-wave (CW) light is coupled to the chip

Figure 3: Schematic of the 4-operand MOMZI. The micrographs of necessary optical components are highlighted in (a) and the full schematic

of the MOON is shown in (b). The phase shifters we use for training and biasing in this work are marked.
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Figure 4: Experimental setup of MOMZI-ONN. Schematic of our MOMZI-ONN test flow. The entire tensor operation is first partitioned into multiple

4 × 1 blocks, and each block is implemented optically on a 4-op MOMZI. The weight parameters and the input signals are programmed by a multi-

channel digital-to-analog converter (DAC). Then the output optical signals are converted to photocurrents using on-chip photodetectors. We use

an off-chip TIA to convert the output photocurrent to electrical signals, which are then read by the oscilloscope. Both the oscilloscope and the DAC are

controlled by a microcontroller. The tensor operation results are provided to the computer for data processing in order to train and deploy the DNN.

through an edge coupler. The MOMZI’s phase shifters are

programmed using a high-precision multi-channel digital-

to-analog converter (DAC). The on-chip photodetector, along

with an off-chip trans-impedance amplifier (TIA) converts

the output optical signal to electrical voltage outputs. These

converted electrical outputswill subsequently be read using

oscilloscopes. Amicrocontroller is used to program the elec-

trical signals that represent 𝑤i ⋅ xi to the DAC and read the
output signals in this work.We use computers to process the

measurement data, train the DNN parameters, and imple-

ment the DNN model. This work uses the microcontroller

to program the DAC to emulate the dot-product operation

directly. In real applications, high-speed DACs with pro-

grammable swings implement the multiplication as shown

in Figure 1(f) and (g). High-speed (up to 224 Gbps) DACs with

tunable gain have been demonstrated and are available

in industry [23], [24]. Meanwhile, the energy efficiency of

tunable DACs can be further improved with programmable

memristors or phase-change devices. In addition, current

fabrication and co-packaging technologies enable the inte-

gration of electrical control circuits and the laser on a sin-

gle substrate [25] or a single chip [26], resulting in much

higher compactness, shorter interconnect paths, and higher

efficiency.

In this work, we construct a CNN with our MOMZI

and benchmark its performance on a street view house

number (SVHN) dataset. It is more complicated than the

MNIST dataset [18] since each image contains color infor-

mation and various natural backgrounds. To perform con-

volutional operations with our PTCs, we employ the widely-

used tensor unrolling method (im2col) [27]. Large-size ten-

sor operations are partitioned into 4× 1 blocks andmapped

onto our MOMZI. We first calibrate the behavior of each

phase shifter for training and model it using Eq. (4), as

shown in Figure 5(a). Based on the chip measurement

data, our proposed hardware-aware training framework

can efficiently train the ONN weights while being fully

aware of all the physical non-idealities during optimiza-

tion, e.g., process variations, thermal crosstalk, and signal

quantization [14]. The dynamic noises are also measured

(shown in Figure 5(b)) and added to the training frame-

work to improve the robustness of ONNs (see Supplemen-

tary Materials Note 1). Additional power monitors can be

added to the output port or the drop port of the MOMZI

to realize in-situ training [28]–[30], which can continuously

monitor the MOMZI’s performance and update our train-

ing framework to improve the training accuracy. In-situ

training can also potentially improve the training speed

of MOMZI-PTCs by training multiple MOMZIs in parallel.

After modeling the chip’s actual response, we map the

trained weights to our MOMZI to implement tensor oper-

ations. Figure 5(c) shows some normalized measured out-

put results. Finally, we evaluate the task performance of

our photonic neural chip on different ML tasks, where par-

tial accumulation, nonlinearity, and other post-processing

operations are offloaded to the digital computer. Figure 5(d)

illustrates the network structure for training our MOMZI-

ONN as well as the flow to implement im2col method with

MOMZIs.

Our experiments show that under 4-bit voltage control

resolution (16 phase shift levels for each operand), the infer-

ence accuracy of the CNN reaches ∼85.89 % in our experi-

mental demonstration. The confusion matrix depicting the

prediction results is shown in Figure 5(e). Figure 5(f) and (g)

shows the tested probability distribution of different street-

view numbers. As a reference, we can achieve 91.8 % accu-

racy using an ideal CNN model with the same network

structure on 64-bit computers. One can improve the task
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Figure 5: Experimental result of street view house number (SVHN) recognition with the MOMZI-ONN. (a) Our measured output data and curve fitting

for training the MOMZI. The tuning range of the total phase shift of four operands is
[
− 𝜋

2
,
𝜋

2

]
. (b) Dynamic noise analysis of output signal of MOMZI,

the measured standard deviation of the dynamic noise is∼0.5 %. (c) Comparison between experimentally measured output and fitted output. The
deviation is marked in red. (d) Structure of the CNN. The first convolutional layer has three input channels and 32 output channels with a stride of 2.

The subsequent two convolutional layers have 32 input/output channels with a stride of 1. After adaptive average pooling, we use a linear classifier

with 10 outputs for final recognition. The convolution is realized by MOMZIs with im2col approach (shown on the right). When convolution is mapped

to a matrix multiplication, each length-k vector dot-product is mapped to one k-op MOMZI. (e) Our measured output data and curve fitting for training

the MOMZI-ONN. The tuning range of the total phase shift of four operands is
[
− 𝜋

2
,
𝜋

2

]
. (e) The confusion matrix of the trained MOMZI-ONN on the

SVHN dataset shows a measured accuracy of 85.89 %. (f) and (g) Show the predicted probability distribution of our MOMZI-ONN on two selected test

digits in the SVHN dataset.
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performance of MOMZIs using operands with more linear

phase responses and higher control precision, which will be

shown hereinafter.

5 Discussion

5.1 Expressivity evaluation

Our MOMZI-ONN exhibits comparable trainability and

expressivity with ONNs designed for GEMMs with k times

fewer optical component (MZI) usage (k is the number of

operands). By explicitly modeling the transfer function of

the MOMZI during ONN training, we can efficiently learn

the mapping from the software model to the MZI devices.

Here, we simulate the task performance of ourMOMZI-ONN

with different numbers of operands on the SVHN dataset

using the same NN model and control precision. An ideal

CNNmodel with the samemodel architecture is also trained

as a reference. In the evaluation, the phase response of

each operand is Δ𝜙 = 𝛾ΔV (𝛾 is the modulation coeffi-

cient), which can be realized on linear phase shifters such

as lithium niobate EO phase shifters [31]. In simulations, we

add a phase bias𝜙b = 𝜋

2
to enable a balanced output range.

The evaluation results are shown in Figure 6, showing that

our MOMZI-ONNs can achieve>91 % accuracy on the SVHN

dataset, which has <0.6 % accuracy difference compared

to the ideal CNN model. It should be noted that the task

performance of MOMZI-ONN is insensitive to the number of

operands once we properly normalize the operands. More-

over, the number of active MZI devices to implement an

n-input, m-output linear layer are mn

k
k-operand MOMZIs.

Therefore, ONNs based on MOMZIs with a large number of

operands will significantly reduce the hardware cost with-

out accuracy loss.

5.2 Propagation delay and loss

By minimizing the number of cascaded MZI devices in

the critical path of PTCs, MOMZI-PTC outperforms single-

operandMZI-PTC in both propagation loss and optical delay

by one to two orders ofmagnitude. In thiswork, we evaluate

the propagation delay and loss of MOMZI-PTC using the

foundry’s process-design-kit (PDK) libraries. The parame-

ters of optical devices are given in Table S1 (see Supplemen-

tary Materials Note 2). As shown in Figure 1(d), the MOMZIs

in one optical path are placed parallelly in our PTC, so the

insertion loss and propagation loss contributed by lossy

MZIs will not accumulate when the size of the DNN model

increases. As a result, the optical delay and the propagation

loss of a MOMZI-PTC with n-inputs and m- outputs can be

calculated as follows:

Figure 6: Task performance and hardware cost of MOMZI-ONN on SVHN

dataset. Inference accuracies of MOMZI-ONNs with different operand

numbers are shown. Using the same neural network structure, the

accuracy of an ideal CNN model is 91.8 %. The normalized total number

of MZI devices with different operand numbers of MOMZI-ONNs

compared to ideal CNN models is shown. Suppose the matrix size is

n × n, and the number of microring- and MZI-PTCs is normalized to 1.

𝜏MOMZI − PTC =
ng

c

(
LMOMZI + Lcombiner

)
(6)

ILMOMZI − PTC = ILMOMZI + ILcombiner (7)

In Eq. (6), ng = 4.3 is the group index of silicon waveg-

uides. LMOMZI is the length of the MOMZI, which depends

on the operands and the waveguides used to connect these

operands. Since the tuning ranges of a MOMZI and a single-

operand MZI are the same, the total length of the operands

of MOMZI should also be the same as the length of a high-

speed electro-optic (EO) modulator. Here we assume the dis-

tance between each operand to be d = 10 μm based on the

device layout of a recently-published two-operand 10-μm-
radiusmicroringmodulator [32].Lcombiner is the length of the

on-chip combiners/multiplexers, for microring-filter-based

multiplexers, Lcombiner = n

k
Lring. ILMOON is the insertion loss

of one multi-operand modulator, ILcombiner is the total inser-

tion loss of the combiner, which is
n

k
ILring with add-drop

microrings as multiplexers. Increasing the operand num-

ber k can potentially reduce both the IL and propagation

delay.

On the other hand, the propagation loss of single-

operand MZI-PTC can be estimated as (n+m+ 1)ILMZI(ls) +
ILMZI(hs), while the total device length can be expressed

as (n+m+ 1)LMZI(ls) + LMZI(hs). Here, MZI(hs) denotes the

high-speed EO modulators for input signal encoding, and

MZI(ls) is the TO switch for weight encoding. Because the

tuning range and the modulation mechanism of the MOMZI

should be the same as that of the input EOmodulator, we let
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ILMOMZI = ILMZI(hs). The model parameters are available in

Table S1.

The results presented in Figure 7(a) and (b) demon-

strate that using the same component library [17], our

MOMZI-PTC can achieve an optical delay that is approxi-

mately 49 times lower than that of a single-operand MZI-

PTC. Furthermore, the propagation loss of our MOMZI-PTC

is ∼257 dB lower than that of the single-operand MZI-PTC,

which results in lower laser power requirements to drive

the ONN and a lower response time.

5.3 Computational speed

MOMZI-PTC outperforms single-operand MZI-PTC in com-

putational speed by minimizing optical propagation delay

in the critical path. The total delay of MOMZI-PTC is

determined by factors such as the response time of tun-

able DACs, EO response time, optical propagation delay,

photodetection time, and other electrical processing cir-

cuits. With the availability of high-speed (224 GBaud) DACs

featuring tunable gains [24], and considering that other

electrical components remain the same between MOMZI-

PTCs and single-operandMZI-PTCs,MOMZI-PTC’s total delay

is significantly lower than that of single-operand MZI-

PTC, thanks to a substantial reduction in optical propa-

gation delay. Moreover, because the optical propagation

loss of MOMZI-PTC is significantly lower than single-

operandMZI-PTCs, it is possible to reduce the driving ability

and optimize the photodetection circuits for higher band-

width, potentially enhancing the computational speed even

further.

Like single-operand MZI-PTCs, MOMZI-PTC exhibits a

relatively lower weight programming speed than compu-

tational speed, which is primarily constrained by the pro-

gramming speed of the gain control circuit or the response

time of memristors. However, it’s feasible to tailor the trans-

fer function of MOONs and modify signal encoding tech-

niques for each operand to facilitate high-speed program-

ming of both weights and signals, which will be explored

further in the later discussions.

Figure 7: Performance analysis of MOMZI-PTC and comparison with single-operand (1op) MZI-PTC [8] using foundry PDKs [17]. MOMZIs with different

operand numbers are shown. Here we suppose the circuit structure of the MZI-based PTC is Clement-style [33]. (a) Optical propagation delay in

log scale. (b) Optical propagation loss. (c) Device footprint.
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5.4 Footprint

Our MOMZI-PTC significantly improves the area efficiency

and reduces the number of MZI devices compared to a

single-operand MZI-PTC [8]. Unlike single-operand active

devices such as single-operand MZI, our k-op MOMZI is

capable of implementing length-k vector-vector inner prod-

ucts, which results in a much higher hardware efficiency

in terms of #MAC/MZI. The total device footprint of k-op

MOMZI-PTCs can be estimated using Eq. (8):

SMOMZI − PTC =
m × n

k
SMOMZI + Scombiner (8)

where we assume a distance of d = 10 μm between neigh-

boring operands. Suppose the device footprint of a high-

speed MZI modulator is SMZI(hs) = LMZI(hs)WMZI(hs). The

device footprint of one k-opMOMZI can thenbe estimated as

SMOMZI =
(
LMZI(hs) + (k − 1)d

)
⋅WMZI(hs). Figure 7(c) shows

the estimated device footprint of MOMZI-based PTC and

single-operandMZI-PTC based on our assumptions. The esti-

mated device footprint ofMOMZI-PTC andMZI-PTC is shown

in Figure 7(c). When the matrix size is 128 × 128, our 128-

op MOMZI-PTC consumes ∼127× fewer MZI modulators,

leading to ∼6.2× footprint reduction compared to single-

operand MZI-PTC [8] with the same matrix size and optical

component selection.

From Eq. (8) and Figure 7(c), MOMZI-based PTC will be

more area efficient with a larger number of operands k

on each MOMZI. The foundry’s fabrication process preci-

sion,which determines the shortest operand one candesign,

restricts the maximum number of operands. Moreover, the

area for metal routing and placement of electrical tunable

DACs also limits the size of each operand. Previous has

shown that a 10-μm-radius silicon-based microring modu-

lator can be divided into 32 independent active segments

using a 45-nm technology node [34], where each operand

only consumes 2 μm in length. This means that an MZI-

modulator with a 1.6 mm-length modulation arm has the

potential to support up to 800 operands using current lay-

out technology, which should be comparable with other

analog electronic tensor cores in scalability, e.g., 256 × 256

memristor-based crossbar arrays [35].

Another big advantage of the proposed MOON-based

PTC is its superior compatibility with compact, high-speed

optical modulators, even with high insertion loss, e.g.,

plasmonic-on-silicon modulators, which have only 15 μm
modulation length and 11.2 dB IL [5]. The fundamental rea-

son is the small number of cascaded devices in the criti-

cal path. Figure 8 shows the normalized device footprint

compared with silicon-based MZI-PTCs, which shows the

plasmonic-on-silicon-MOMZI-PTC can reduce the footprint

Figure 8: Normalized footprint of MOMZI-based PTC using scaling

technologies. The x-axis is the ratio between the area of low-speed

silicon-based TO MZI (550 × 125 μm2) and high-speed MZI. Using

compact plasmonic-on-silicon high-speed modulators (∼220 × 100 μm2)

[21], SMZI(low − speed)∕SMZI(high − speed) ≅ 3.12, and a 128-op MOMZI-PTC

consumes a 222× smaller footprint than single-operand MZI-PTCs using

silicon-based MZI modulators. For simplicity, we assume the entire

waveguide length for connecting the operands is the same as the total

length of the operands of MOMZIs, so SMOMZI = 2SMZI(high−speed).

by 177× compared to single-operand silicon-MZI-based PTC.

Single-operand MZI-PTCs are not compatible with these

compact high-lossmodulators because there are 2n + 1MZIs

in the critical path. Using compact high-loss modulators for

weight configuration will lead to significant propagation

loss and require high laser power to drive the neural chip.

Finally, the hardware cost ofMOMZI-PTC can be further

optimized with operand pruning strategies. To implement

an FC layer in DNN models, especially with sparse matri-

ces [38], we only need to encode non-zero weights on the

MOMZIs. The operands of MOMZIs with zero weight values

can be either removed from the device to save footprint or

power-gated to reduce energy consumption. Sparsity-aware

training [39] can be applied to prune redundant MOMZI

operands while maintaining task accuracy.

5.5 Energy efficiency

MOMZI-based PTC is a more energy-efficient alternative

to single-operand MZI-PTCs for implementing large-tensor-

size operations due to its lower propagation loss, which

allows it to consume over 256 dB less laser power. The

total power consumption ofMOMZI-PTC for computing com-

prises the power required to drive the lasers, modulators,

and photodetectors and for biasing the MOMZI, as well as

the power needed to drive the digital-to-analog converters
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Figure 9: Power breakdown of a 128 × 128 photonic tensor core implemented by 128 128-op MOMZIs using existing technology (a) and emerging

technology (b). (a) The total power of the MOMZI-ONN is 5.7 W at 10 GHz clock rate (56 TOPS/W). (b) Using emerging technologies, we use ADC-less

designs (e.g., magnetic-tunnel-junction (MTJ)-based analog content-addressable memory (ACAM) [36], [37]) to boost the energy efficiency to∼604
TOPS/W.

(DACs) and analog-to-digital converters (ADCs). The silicon-

based carrier-depletion MZI’s modulation energy consump-

tion in previous work can achieve ∼146 fJ/bit [40]. Fur-
thermore, the power to bias the MOMZI is ∼2.5 mW per

phase shifter if we use thermal phase shifters from foundry

PDKs [41].

Using the parameters of existing technology provided

in Table S3 (see Supplementary Materials Note 3), the opti-

cal part of MOMZI-PTC, accounts for <9 % of total power

consumption when the tensor size is 128 × 128. The power

breakdown analysis shown in Figure 9(a) indicates that our

128-op MOMZI-PTC can achieve ∼56 TOPS/W at a 10 GHz

clock rate, 100 % higher than existing analog electronic ten-

sor cores [42] with 100× faster operating speed. Currently,

the energy efficiency of MOMZI-PTC is dominated by data

converters such as ADCs. This work employs an 8-bit, 10

GSPS ADC that consumes 39 mW per channel [43].

The energy efficiency can be further improved to∼604
TOPS/W using emerging high-speed and energy-efficient

data converters and EO modulators. Recent advances in

energy-efficient active optical components, such as the

plasmonic-on-silicon modulator that consumes approxi-

mately 0.1 fJ per bit modulation energy at 50 GHz operat-

ing frequency, have made it possible to reduce the power

consumption of MOMZI further [21]. The power to bias the

MOMZI can be decreased to zero with phase change mate-

rials or nano-opto-electro-mechanical devices [44], [45].

Using energy-efficient modulators, the energy consump-

tion of the optical computing part only accounts for <3 %

of the total power consumption, showing that large-size

MOMZI-PTC will not bring scalability issues due to exces-

sive laser power. Moreover, we can use energy-efficient

analog content-addressable memory (ACM) to replace the

ADCs [36], reducing the power consumption of ADCs by

∼33×. As shown in Figure 9(b), the final power breakdown
of MOMZI-PTC for computing shows our MOMZI-PTC can

achieve a competitive energy efficiency of ∼604 TOPS/W,

20× higher than existingmemristor-based analog electronic

tensor cores [42]. More details of our power analysis are

provided in Supplementary Materials Note 3.

In addition, our k-opMOMZI-PTC can reduce theweight

reconfiguration energy by k times compared to single-

operand-device-based PTCs, which will bring considerable

energy efficiency improvement, especially when the pho-

tonic tensor cores need to be frequently reconfigured tomap

a large number of matrix blocks in DNNs. The number of

MZI devices in our MOMZI-PTC is only O
(
mn

k

)
, which is k

times fewer than that of PTCs with single-operand devices

((mn) [19] or
(
max

(
m2, n2

))
[46]) This feature of MOMZI-

PTC is essential to implement modern DNNs, where weight

loading takes nontrivial hardware costs [22].

5.6 Nonlinearity engineering

The nonlinearity of MOONs can be customized in various

dimensions to achieve a desired activation function, poten-

tially saving power for doing activation functions electron-

ically. The built-in nonlinearity of MOON is contributed by

the weight/signal encoding way and the nonlinear transfer

function of the optical modulator with the input voltage. To

customize such built-in nonlinearity, one can add electrical

or optical components before or after photodetection to

alter the optical outputs to implement the activation func-

tion. Previous work has widely investigated this approach

[47]–[49]. Typically, one can add saturable absorbers before

photodetection with a linear optical modulator [50] to
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construct a ReLU-like MOON, reducing the hardware cost to

realize activation functions electronically.

Depending on the transfer function of the MOON, the

weight encoding approach can be designed to enable high-

speed dynamic tensor operations beyond ones with sta-

tionary weights. Dynamic tensor operations mean both the

inputs and the weights can be updated at high speed, which

is crucial in emerging applications, such as the self-attention

operation in transformer [51] and on-chip training tasks for

intelligent edge learning. A specific example of an optical

modulator with a linear field response region with volt-

age
(||ΔEout|| ∝ ΔV

)
is provided here. Suppose the electrical

modulation signal of the modulator is bidirectional; then,

one can use two MOONs and one differential photodetec-

tor to implement high-speed vector-to-vector operations. As

shown in Figure 10, the weight and input voltage signal

𝑤i and xi are encoded with the same phases on operand i

of the upper modulator, and high-speed signals 𝑤i and xi
with opposite phases encoded on operand i of the downer

modulator. After differential photodetection, one can obtain

the output current signal as:

I− = I0 + 𝛼

(
Σ
(
𝑤i − xi

)2)
I+ = I0 + 𝛼

(
Σ
(
𝑤i + xi

)2)
Iout = I+ − I− = 2𝛼Σ

(
𝑤i ⋅ xi

) (9)

where 𝛼 is the modulation efficiency of each operand.

I0 is the output intensity of the modulator at the biased

point. Compared to MOONs that use memristors to encode

stationary weights, the dual-linear-modulator-based MOON

shown in Figure 10 can enable high-speed weight repro-

gramming/updates to implement high-speed dynamic ten-

sor operations. One can investigate more efficient signal

encoding approaches of MOONs to support more types of

tensor operations in state-of-the-art DNNs.

Figure 10: A MOON with two linear modulators for matrix-matrix

multiplications. The optical output power of each modulator is

proportional to the electrical input power or V2. Here we apply

differential input signals±xis on upper/lower modulators, and put
weight signals𝑤is on both upper/lower modulators. The output power

after differential photodetection is then proportional to
∑n

1
𝑤i ⋅ xi .

6 Conclusions

We have presented a scalable, energy-efficient optical neu-

ral network with customized multi-operand optical neu-

rons (MOONs). We have experimentally demonstrated a 4-

operand silicon-photonic MOMZI on practical image recog-

nition tasks. Compared to prior single-operand-MZI-based

photonic tensor cores (PTCs), our MOMZI-based PTC design

can achieve one to two orders-of-magnitude reduction

in MZI device usage, footprint, latency, and propagation

loss. The speed, footprint, and energy efficiency of our

MOON-based PTC can benefit from more advanced tech-

nologies, e.g., faster andmore efficient data converters, opti-

cal devices, and nonlinearity engineering. Our customized

MOON design provides a scalable solution for the next-

generation photonic AI accelerators with extreme compute

density and energy efficiency.
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