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Optical Neurocomputing
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[Shen+, Nature Photonics 2017]
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[Totovic+, JSTQE 2020]

⧫ Moore’s law is winding down

⧫ Optics as next-generation AI solution

Ultra-high speed & Ultra-low energy cost

https://www.wallpaperflare.com/drone-dji-sky-landscape-flying-red-sunset-mid-air-motion-wallpaper-ehbge


Photonic AI Chips
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Based on optics/photonics

➔ photonic ICs



Optical Neural Networks (ONN)

⧫ Emergence of photonic NNs

› Ultra-fast speed (light in and light out)

› >100 GHz photo-detection rate

› Near-zero energy consumption if fixed

[Shen+, Nature Photonics 2017]
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⧫ Map weight matrix to MZI meshes

⧫ Singular value decomposition (SVD)

› 𝑊 = 𝑈Σ𝑉∗

⧫ Unitary group parametrization (UP)

› 𝑈 𝑛 = 𝐷ς𝑖=𝑛
2 ς𝑗=1

𝑖−1 𝑅𝑖𝑗(𝜙𝑖𝑗)



ONN On-Chip Training

⧫ What is ONN on-chip (on-device) training

› In-situ calibration and learning on non-ideal photonic circuits

⧫ Why on-chip training

› Inaccurate software modeling vs. unknown physical variations

» Severe performance drop after deployment

› Inefficient and slow simulation

» Expensive circuit simulation
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ONN Software Training Flow

Time-consuming
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Robust Deployment &
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Prior On-Chip Training Protocols

⧫ Unscalable: 100~1,000 MZIs

⧫ Training instability/divergence

⧫ Limited training efficiency
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[Zhou+, JSTQE’19] [Hughes+, Optica’18]

BFT
[NaturePhotonics’17]

PSO
[OE’19]

AVM
[Optica’18]

FLOPS
[DAC’20]

MixedTrain
[AAAI’21]

Our L2ight

#Params ~100 ~100 ~100 ~1,000 ~2,500 ~10 M

Algorithm ZO Search Evolution (ZO) Adjoint Method (FO) ZO SGD SZO-SCD ZO + FO

Resolution Req. Medium High Medium High Medium Medium

Observability 

Req.

Coh. I/O Coh. I/O Coh. I/O+

Per device monitor

Coh. I/O Coh. I/O Coh. I/O

[Gu+, DAC’20] [Gu+, AAAI’21] 



Our Contributions

⧫ Synergistic ONN On-Chip Learning Framework

› Scalability: First framework that can handle million-parameter ONNs

› Efficiency: Multi-level sparsity to boost efficiency by 30×

› Learnability: Subspace optimization to enable on-device self-learnability

› Robustness: In-situ noise consideration for noise-resilient ONNs
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Problem Formulation and Challenges

⧫ Optimize noisy MZI phases to minimize learning objective

› Variables: Φ𝑈, Φ𝑉 , ΦΣ

› Non-ideality: cross-talk (Ω), Noise (Γ), Quantization (𝒬), Phase bias (Φ𝑏) 

⧫ Challenges

› Unobservable in-situ light fields

› Limited input/output observability

› Inaccessible gradients for Φ𝑈 and Φ𝑉
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Proposed Framework: L2ight 
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⧫ Identity Calibration (IC): Variation-Agnostic Circuit State Preparation

⧫ Parallel Mapping (PM): Alternate Projection-based Model Deployment

⧫ Subspace Learning (SL): Hardware-Aware Multi-Level Sparse Training



Step 1: Identity Calibration
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⧫ Prepare 𝑼 and 𝑽∗ to Identity projection

⧫ min
Φ𝑈,Φ𝑉

σ𝑝.𝑞 𝑼𝑝𝑞 Φ𝑝𝑞
𝑈 − 𝑰

2
+ 𝑽𝑝𝑞

∗ Φ𝑝𝑞
𝑉 − 𝑰

2

⧫ min
Φ

σ𝑝,𝑞 ||𝑼𝑝𝑞(Φ𝑝𝑞
𝑈 )𝚺𝑝𝑞𝑽𝑝𝑞

∗ (Φ𝑝𝑞
𝑉 )𝚺𝑝𝑞

−1 − 𝑰||

⧫ Solve batched problem via zeroth-order optimization

⧫ 𝑼 converges to sign-flipping matrices ෨𝑰

𝐼
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⧫ Solve batched problem via zeroth-order optimization

⧫ 𝑼 converges to sign-flipping matrices ෨𝑰

𝐼

Efficient variation-agnostic calibration by 

partitioning large-scale problem into a 

batch of subtasks



Step 2: Parallel Mapping
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⧫ Map pretrained matrix to optical mesh

⧫ Batched regression: min
Φ

σ𝑝.𝑞 ෪𝑾𝑝𝑞 Φ𝑝𝑞 −𝑾𝑝𝑞

2

⧫ Zeroth-order optimization on 𝑼 and 𝑽∗

⧫ Analytical optimal projection (OSP) on 𝚺

› 𝚺𝐨𝐩𝐭 = 𝐝𝐢𝐚𝐠 ෨𝑰∗𝐕∗𝐖∗𝑼෨𝑰
∗

𝑊

......

𝑽∗ 𝑰 𝑰෨ 

𝚺𝑜𝑝𝑡  
...

𝑼 𝑰 𝑰෨ 

𝑾 𝑰෨∗𝑼∗𝑾 ...

𝑾∗𝑼𝑰෨ 



Step 2: Parallel Mapping

13

⧫ Map pretrained matrix to optical mesh

⧫ Batched regression: min
Φ

σ𝑝.𝑞 ෪𝑾𝑝𝑞 Φ𝑝𝑞 −𝑾𝑝𝑞

2
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∗
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𝑽∗ 𝑰 𝑰෨ 
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𝑾 𝑰෨∗𝑼∗𝑾 ...

𝑾∗𝑼𝑰෨ 

Batched regression decouples ZOO 

from stochasticity, thus can efficiently 

deploy pretrained ONNs 



Step 3: Subspace Learning
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⧫ In-situ subspace gradient acquisition via reciprocity

⧫ Shine light forward/backward

⧫ Sign flips cancel out at diagonals

Trade expensive full-space trainability for 

efficient first-order subspace gradients

Only optimize 𝜮 and freeze 𝑼 and 𝑽∗



Efficiency: Multi-Level Sparse Subspace Learning
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⧫ Balanced feedback matrix sampling

› Save cost on  
𝜕ℒ

𝜕𝑥
= 𝑾𝑇 𝜕ℒ

𝜕𝑦

› Sampling weight blocks for efficient error 

feedback (sparsity 𝛼𝑊)

› Row-wise top-K sampling 

» Lower variance than uniform sampling

» Better load-balance than naive top-K sampling

› Gradients are well aligned with true grad.

Feedback matrix 𝑾𝑇 can be 

approximated for higher efficiency



Efficiency: Multi-Level Sparse Subspace Learning
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⧫ Information-preserving column sampling

› Save cost on  
𝜕ℒ

𝜕𝑾
=

𝜕ℒ

𝜕𝒚
∗ 𝒙𝑇

› Sampling unrolled columns for efficient gradient computation 

(sparsity 𝛼𝐶)

› Remains partial pixel information

› Structured sampling can save runtime

𝑥11 𝑥12 ⋯ 𝑥1𝑊

𝑥21 𝑥22

⋮

𝑥𝐻1

𝑥11 𝑥12 ⋯ 𝑥1𝑊

𝑥21 𝑥22

⋮

𝑥𝐻1
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…

𝑥𝑞

Previous Spatial Sampling
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…
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𝑥11 𝑥12 ⋯ 𝑥1𝑊

𝑥21 𝑥22

⋮

𝑥𝐻1

𝑊

𝐻

𝐵 × 𝐶𝑖𝑛

Pixel Information Loss

𝑥11 𝑥12 𝑥22 ⋯

𝑥12 𝑥22

⋮ 𝑥22

𝑥22

𝐵𝐻′𝑊′
𝐶
𝑖𝑛
𝐾
2

Our Column Sampling 𝜕ℒ

𝜕𝑦

𝜕ℒ

𝜕𝐖

𝑦 Partial Info Remained
𝑥11 𝑥12 𝑥22 ⋯
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⋮ ⋮
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⋮

𝑥𝐻1

𝑦No Runtime Reduction Less Runtime
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Column sampling is more efficient

& preserving more information



Efficiency: Multi-Level Sparse Subspace Learning
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⧫ Data sampling

› Only train on a subset of mini-batches [E2-Train, NeurIPS’20]

› Randomly skip interations with probability αD
› Direct speedup with marginal performance loss

› Compatiable with feedback and column sampling



Experimental Results: Scalability
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⧫ 1,000× more scalable than prior ONN on-chip training protocols

⧫ High accuracy on million-parameter ONNs

⧫ 1.7× speedup and 6.9× energy reduction on small ONNs than MixedTrain [Gu+, AAAI’21]

FLOPS: [Gu+, DAC’20] 

MixedTrn: [Gu+, AAAI’21]



Experimental Results: Efficiency
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⧫ Train from scratch: Multi-level sparse learning is ~3× more efficiency than SoTA 

sparse training

⧫ Train with mapping: Three-stage L2ight flow achieves >30× speed and energy

efficiency improvement

⧫ Nearly zero performance drop with heavy sparse sampling

RAD: [Oktay+, ICLR’21] 

SWAT: [Raihan+, NeurIPS’20]



Experimental Results: Self-learnability and Robustness
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⧫ Mapping can improve solution quality and save ~10× hardware cost

⧫ Pure on-chip learnability without mapping pretrained model

› Enabled by in-situ subspace gradient acquisition

⧫ High noise tolerance to non-ideal identity calibration ෨𝑰

⧫ In-situ transferability in the restricted subspace



Conclusion
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⧫ L2ight: First scalable and efficient ONN on-chip training flow

⧫ Scalability:    1,000× more scalable than prior SoTA

⧫ Efficiency:     30× higher training efficiency via multi-level sparse subspace learning

⧫ Robustness:  hardaware variation-agnostic flow with marginal accuracy loss

⧫ Fure work

› Explore new ONN architectures

› Experimental demonstration on real optical neural chip
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