

NeurOLight: A Physics-Agnostic Neural Operator Enabling Parametric Photonic Device Simulation

Jiaqi Gu¹, Zhengqi Gao², Chenghao Feng¹, Hanqing Zhu¹, Ray T. Chen¹, Duane S. Boning², David Z. Pan¹ ¹Department of ECE, UT Austin, ²EECS MIT

December 28, 2024

jqgu@utexas.edu

This work was supported in part by AFOSR MURI

Light-Al Interaction: Photonic Al & Al for Optics

- Photonic IC for AI computing
- AI for photonic IC design

Manual Design → Automated ONN Design Standard Devices → Customized Photonic Structure Key step: Al-assisted Simulation

Motivation for AI for Optical Simulation

- Basic devices are not enough...?
- Leverage physics of light propagation in customized photonic structures
 - > Customized structure can be more compact and efficient
 - > Hard to get compact analytical model
 - > Slow simulation and optimization loop
- Al accelerated optical simulation as an entry point
 - > Can ML models learn the light propagation principles?

Target

- > Query light fields of photonic structures with certain inputs and design variables
- > Ultra-fast & Parallel & Differentiable
- > Early exploration only, do not replace commercial simulators in final validation stage

Related Work

- Ad-hoc MLP model $f: \mathbb{R}^{N \times N} \to \mathbb{R}$ to fit a certain FoM
 - > Boolean cavity map \rightarrow power spitting ratio
- Does not learn any underlining physics principle in the device
- ♦ No generalization to other tasks → the fitted curve has no other usage

SciRep'19 Mitsubishi Electric Research Laboratories Predict power splitter transmission and inverse design Direct prediction without physics principle

Related Work

- MaxwellNet: Physics-informed NN for Free-Space Lens [APL'22]
 - > Based on maxwell equation: *complicated*
 - > Solve specific instances (fixed wavelength, fixed domain): *limited generalization*

Related Work

- Physics-augmented NN on meta-lens [Nature'21]
 - > Still need maxwell equation. Limited to specific meta-lens instance

Need Maxwell equations? Save the efforts on PDE implementation

Only fit to specific instance? Generalize to a family of instances

Maxwell is PDE \rightarrow NN can learn to solve PDEs

- Neural operator learns a family of parametric PDEs in a data-driven way
 - Not just fitting one PDE instance. Not physics-informed
- Fourier neural operator [ICLR'21]
 - Model PDE as a series of *kernel integral*
 - » $a \rightarrow v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k \rightarrow u$
 - > Weather forecast, flow prediction, ...

$$(\mathcal{K}v_k)(\boldsymbol{r}) = \int_{\Omega} \kappa(\boldsymbol{r}_1, \boldsymbol{r}_2) v_k(\boldsymbol{r}_2) \mathrm{d}v_k(\boldsymbol{r}_2), \forall \boldsymbol{r}_1 \in \Omega \quad \kappa(\boldsymbol{r}_1, \boldsymbol{r}_2) = \kappa(\boldsymbol{r}_1 - \boldsymbol{r}_2)$$

 $(\mathcal{K}v_k)(\boldsymbol{r}) = \mathcal{F}^{-1} \big(\mathcal{F}(\kappa) \cdot \mathcal{F}(v_k) \big)(\boldsymbol{r})$

- Advantages of FNO
 - Minimum physics knowledge needed
 - Invariance to discretization
 - Fast inference
 - Good generalization

Our Proposed Idea: NeurOLight

- *Physics-agnostic* simulation for photonics devices
- Slow 2-D FDFD simulation (\times) \rightarrow Ultra-fast surrogate NN model ($\sqrt{}$)

Our Proposed Idea: NeurOLight

- *Physics-agnostic* simulation for photonics devices
- Slow 2-D FDFD simulation (\times) \rightarrow Ultra-fast surrogate NN model ($\sqrt{}$)
- Limited PDE space (\times) \rightarrow Model the joint distribution over PDE parameters ($\sqrt{}$)

Our Proposed NeurOLight

Physics-agnostic neural operator

$$\theta^* = \min_{\theta} \mathbb{E}_{a \sim \mathcal{A}} \left[\mathcal{L} \left(\Psi_{\theta}(\mathcal{E}(a)), \Psi^*(a) \right) \right]$$

$$\mathcal{A} \to \mathsf{PDE} \text{ solutions } \mathcal{U}$$

• Learn the mapping: PDE observations $\mathcal{A} \rightarrow \text{PDE}$ solutions \mathcal{U}

How To Generalize To Different Scales of Domains

Scale-Adaptive Domain Discretization

- > Unified domain $\Omega \rightarrow \widetilde{\Omega}$
- Resize different device sizes to the same image sizes
- Mesh grid resolution $(\Delta l_x, \Delta l_z)$ is elegant representation
- Can support *batched* training & inference
- Do not need domain-specific retraining

Fix domain Different resolutions

Different domain

scales

12

How To Represent PDE Parameters

Joint/Unified PDE Representation

- $\widetilde{\Omega}$: tuple, ϵ_r : matrix, ω : scalar, *J*: vectors
- > (tuple, matrix, scalar, vectors,...) \rightarrow Tensor
- Wave prior to encode $(\Omega, \omega, \epsilon_r)$
 - > Rich patterns for NN to extract features & Implicit physics prior encoding

 $\mathcal{A} = (\widetilde{\Omega}, \epsilon_r, \omega, J) \stackrel{\mathcal{E}}{\longrightarrow} \mathcal{A}^\dagger = (\epsilon_r, H^J_u, \mathcal{P}_x, \mathcal{P}_z) \in \mathbb{C}^{4 imes M imes N}$

How To Represent PDE Parameters

- Light source encoding (*J*)
 - > Inspired by masked image modeling (MIM) and masked autoencoder (MAE)
 - > Fields in the input waveguide as a *hint*
 - > Model needs to *restore the masked fields*

Eigen Mode of Light Source

How To Do Efficient Kernel Integral

- Cross-shaped NeurOLight blocks
 - > Orthogonal 1-D FNO: vertical / horizontal
 - » Reduce #parameters: $k_v k_h C^2 \rightarrow (k_v + k_h + 8s)C^2/4$
 - > Nonlinear FFN: more local feature extraction
 - More parameter-efficient and better generalization

How To Improve Data Efficiency & Generalization

- Sweeping different light source combinations is costly
- Train: single-source simulation → Test: generalize to multi-source inference

Proposed superposition-based mixup

- > Dynamically superpose input modes during training
- > Multiple single-source predictions (×)
- > One-shot multi-source prediction $(\sqrt{})$
- > Force to *learn critical physics: interference*

Experimental Settings

Device benchmarks

> Randomly generated (1) Tunable MMIs and (2) Etched MMIs. Simulate with *angler*

Variables	Value/Distribution			
	$ \ \mathbf{J} imes \mathbf{J} $ Tunable MMI	$ \mathbf{J} imes \mathbf{J} $ Etched MMI		
Length	$\mathcal{U}(20, 30)$	$\mathcal{U}(20, 30)$	$\mid \mu m$	
Width	$\mathcal{U}(5.5,7)$	U(5.5, 7)	μm	
Port Length	3	3	μm	
Port Width	$\mathcal{U}(0.8, 1.1)$	$\mathcal{U}(0.8, 1.1)$	μm	
Border Width	0.25	0.25	μm	
PML Width	1.5	1.5	μm	
Pad Length	$\mathcal{U}(0.7, 0.9) \times \text{Length}$	$\mathcal{U}(0.7, 0.9) \times \text{Length}$	μm	
Pad Width	$\mathcal{U}(0.4, 0.65) \times \text{Width} \mathbf{J} $	$\mathcal{U}(0.4, 0.65) \times \text{Width} / \mathbf{J} $	μm	
Wavelengths λ	$\mathcal{U}(1.53, 1.565)$	$\mathcal{U}(1.53, 1.565)$	$\mid \mu m$	
Cavity Ratio	-	$\mathcal{U}(0.05, 0.1)$	-	
Cavity Size	-	0.027 Length $\times 0.114$ Width	μm^2	
Relative Permittivity $\boldsymbol{\epsilon}_r$	U(11.9, 12.3)	$\{2.07, 12.11\}$	-	

- Comparison models (comparable #Params)
 - > UNet-2d [APL'22]
 - > 5-layer FNO-2d ($\#Mode_z$ =32, $\#Mode_x$ =10) [ICLR'21]
 - > 12-layer Factorized FNO (F-FNO) [NeurIPS workshop'21]

Main Results

- NeurOLight is more parameter-efficient
- ♦ 53.8% lower error and 44.2% fewer parameters

		ϵ_r +Wave Prior — UNet – F-FNO	Benchmarks	Model	#Params (M) \downarrow	Test Err↓
		- FNO-2d - NeurOLight		UNet [22, 2]	3.47	0.801
ш 1 WЧ 0.5	1		Tunable MMI	FNO-2d [21]	3.29	0.244
				F-FNO [34]	3.16	0.292
	0.5			NeurOLight	1.58	0.122
T T		* ************************************		UNet [22, 2]	3.47	0.792
			Etched MMI	FNO-2d [21]	3.29	0.648
<u>ب</u>				F-FNO [34]	3.16	0.525
000	0 1			NeurOLight	2.11	0.387
		0 50 _100 150 20	Average Improvement		-44.2%	-53.8%
		Epoch				

Main Results: Visualization

Tunable MMI

Etched MMI

Animation

Ablation Studies on Model Designs

Variants	#Params (M)↓	Test Err \downarrow	Runtime $(ms)\downarrow$
NeurOLight	1.58	0.122	12.1
ConvStem \rightarrow Lifting	1.58	0.134	11.9
Extra Parallel Conv Path	1.64	0.129	14.5
$FFN \rightarrow BN\text{-}GELU$	1.37	0.446	6.3
Remove DWConv in FFN	1.57	0.144	10.6
Extra GELU After FNO	1.58	0.148	12.4
Remove DropPath	1.58	0.136	12.1

Ablation Studies on Frequency Components (#Mode)

- Full mode is overparametrized
- (40,70) is the best setting

Ablations on PDE Representation

- Raw PDE parameters are not helpful
- Different from positional encoding in Transformer
- ϵ_r + wave prior is the best setting

ϵ_r	λ	$\widetilde{\Omega}$	\mathcal{P}_x	\mathcal{P}_{z}	$ \Psi_{ heta}(\mathcal{E}(a))-\Psi^*(a) $	Test N-MAE
\checkmark						0.165
\checkmark			$x1^T/N$	$1z^T/M$		0.176
\checkmark	\checkmark	\checkmark				0.220
\checkmark	\checkmark	\checkmark	Wave	Prior		0.152
			Wave	Prior		0.149
\checkmark			Wave	Prior		0.122

Ablations on Superposition Mixedup

- Single-source simulation: save dataset acquisition cost
- Multi-source training: significantly boost generalization
- Multi-source test: fast one-shot prediction
- Low runtime cost & high data efficiency & good generalization

Train	Inference Mode	#Train Examples (K)					Runtime
Augmentation		1.4	4.1	6.9	9.7	12.4	(ms)
None	Single-Source Multi-Source	0.346 0.892	0.257 0.882	$\begin{array}{c} 0.202\\ 0.880 \end{array}$	0.198 0.865	0.194 0.873	23.8 8.3
Superposition Mixup	Single-Source Multi-Source	0.229 0.230	0.205 0.208	0.204 0.206	0.200 0.202	0.199 0.202	23.8 8.3

Spectrum Analysis: Generalize to Wavelengths

- Train only sees 5 wavelengths
- Sweep over C-band, 2-nm step
- Generalize to unseen devices with unseen wavelengths

FDFD: >1 min v.s. NeurOLight: <150 ms

Device Adaptation

- Adapt from 3x3 MMIs to 4x4 and 5x5 MMIs
- Finetuning to close the out-of-distribution generalization gap
 - > Small number of new data
 - Short tuning steps

Conclusion

- NeurOLight framework to predict light fields for photonic devices
- New neural operator model: parameter-efficient & data-efficient
- 2-order-of-magnitude faster runtime than numerical solver
- Generalize to large design space
- 53.8% better prediction fidelity and 44.2% less parameter cost
- Preprint: <u>https://arxiv.org/abs/2209.10098</u>
- Open-source codes: <u>https://github.com/JeremieMelo/NeurOLight</u>