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Light-AI Interaction: Photonic AI & AI for Optics
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Manual Design → Automated ONN Design
Standard Devices → Customized Photonic Structure

Key step: AI-assisted Simulation

 Photonic IC for AI computing
 AI for photonic IC design



Motivation for AI for Optical Simulation
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 Basic devices are not enough…?
 Leverage physics of light propagation in customized photonic structures

› Customized structure can be more compact and efficient
› Hard to get compact analytical model
› Slow simulation and optimization loop

 AI accelerated optical simulation as an entry point
› Can ML models learn the light propagation principles?

 Target
› Query light fields of photonic structures with certain inputs and design variables
› Ultra-fast & Parallel & Differentiable
› Early exploration only, do not replace commercial simulators in final validation stage



Related Work

4

 Ad-hoc MLP model 𝑓𝑓:ℝ𝑁𝑁×𝑁𝑁 → ℝ to fit a certain FoM
› Boolean cavity map → power spitting ratio

 Does not learn any underlining physics principle in the device
 No generalization to other tasks → the fitted curve has no other usage

SciRep’19 Mitsubishi Electric Research Laboratories
Predict power splitter transmission and inverse design

Direct prediction without physics principle

Ground-truth
power splitting ratio

1:1.55
Predict the power 

splitting ratio



Related Work
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 MaxwellNet: Physics-informed NN for Free-Space Lens [APL’22]
› Based on maxwell equation: complicated
› Solve specific instances (fixed wavelength, fixed domain): limited generalization



Related Work

6

 Physics-augmented NN on meta-lens [Nature’21]
› Still need maxwell equation. Limited to specific meta-lens instance
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Need Maxwell equations?
Save the efforts on PDE implementation

Only fit to specific instance?
Generalize to a family of instances



Maxwell is PDE → NN can learn to solve PDEs
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• Neural operator learns a family of parametric PDEs in a data-driven way
• Not just fitting one PDE instance. Not physics-informed

• Fourier neural operator [ICLR’21]
› Model PDE as a series of kernel integral transformation

» 𝑎𝑎 → 𝑣𝑣0 → 𝑣𝑣1 → ⋯ → 𝑣𝑣𝑘𝑘 → 𝑢𝑢
› Weather forecast, flow prediction, …

• Advantages of FNO
• Minimum physics knowledge needed
• Invariance to discretization
• Fast inference
• Good generalization



Our Proposed Idea: NeurOLight
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 Physics-agnostic simulation for photonics devices
 Slow 2-D FDFD simulation (×) → Ultra-fast surrogate NN model (√)



Our Proposed Idea: NeurOLight
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 Physics-agnostic simulation for photonics devices
 Slow 2-D FDFD simulation (×) → Ultra-fast surrogate NN model (√)
 Limited PDE space (×) →Model the joint distribution over PDE parameters (√)



Our Proposed NeurOLight
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 Physics-agnostic neural operator
 Learn the mapping: PDE observations 𝒜𝒜 → PDE solutions 𝒰𝒰



How To Generalize To Different Scales of Domains
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 Scale-Adaptive Domain Discretization
› Unified domain Ω → �Ω
› Resize different device sizes to the same 

image sizes
› Mesh grid resolution (Δ𝑙𝑙𝑥𝑥,Δ𝑙𝑙𝑧𝑧) is elegant 

representation

 Can support batched training & 
inference

 Do not need domain-specific retraining

Fix domain
Different resolutions

Different domain 
scales

Ω

�Ω



How To Represent PDE Parameters
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 Joint/Unified PDE Representation
› �Ω: tuple, 𝜖𝜖𝑟𝑟: matrix, 𝜔𝜔: scalar, 𝐽𝐽: vectors
› (tuple, matrix, scalar, vectors,…) → Tensor

 Wave prior to encode (Ω,𝜔𝜔, 𝜖𝜖𝑟𝑟)
› Rich patterns for NN to extract features & Implicit physics prior encoding

Diverse high-order 
wave patterns 

learned by model



How To Represent PDE Parameters
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 Light source encoding ( 𝑱𝑱)
› Inspired by masked image modeling (MIM) and masked autoencoder (MAE)
› Fields in the input waveguide as a hint
› Model needs to restore the masked fields

[MAE, Kaiming He+, 2021]



How To Do Efficient Kernel Integral
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 Cross-shaped NeurOLight blocks
› Orthogonal 1-D FNO: vertical / horizontal

» Reduce #parameters: 𝑘𝑘𝑣𝑣𝑘𝑘ℎ𝐶𝐶2 → 𝑘𝑘𝑣𝑣 + 𝑘𝑘ℎ + 8𝑠𝑠 𝐶𝐶2/4
› Nonlinear FFN: more local feature extraction
› More parameter-efficient and better generalization



How To Improve Data Efficiency & Generalization
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 Sweeping different light source combinations is costly
 Train: single-source simulation→ Test: generalize to multi-source inference

 Proposed superposition-based mixup
› Dynamically superpose input modes during training
› Multiple single-source predictions (×)
› One-shot multi-source prediction  (√)
› Force to learn critical physics: interference



Experimental Settings
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 Device benchmarks
› Randomly generated (1) Tunable MMIs and (2) Etched MMIs. Simulate with angler

 Comparison models (comparable #Params)
› UNet-2d [APL’22]
› 5-layer FNO-2d (#𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑧𝑧=32, #𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑥𝑥=10) [ICLR’21]
› 12-layer Factorized FNO (F-FNO) [NeurIPS workshop’21]



Main Results

18

 NeurOLight is more parameter-efficient
 53.8% lower error and 44.2% fewer parameters 



Main Results: Visualization
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 Tunable MMI

 Etched MMI



Animation
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Ablation Studies on Model Designs
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Ablation Studies on Frequency Components (#Mode)
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 Full mode is overparametrized
 (40,70) is the best setting 

Norm. Error



Ablations on PDE Representation
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 Raw PDE parameters are not helpful
 Different from positional encoding in Transformer
 𝜖𝜖𝑟𝑟 + wave prior is the best setting



Ablations on Superposition Mixedup

24

 Single-source simulation: save dataset acquisition cost
 Multi-source training: significantly boost generalization
 Multi-source test: fast one-shot prediction
 Low runtime cost & high data efficiency & good generalization



Spectrum Analysis: Generalize to Wavelengths
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 Train only sees 5 wavelengths
 Sweep over C-band, 2-nm step
 Generalize to unseen devices with unseen wavelengths



Device Adaptation
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 Adapt from 3x3 MMIs to 4x4 and 5x5 MMIs 
 Finetuning to close the out-of-distribution generalization gap

› Small number of new data
› Short tuning steps



Conclusion
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 NeurOLight framework to predict light fields for photonic devices
 New neural operator model: parameter-efficient & data-efficient
 2-order-of-magnitude faster runtime than numerical solver
 Generalize to large design space
 53.8% better prediction fidelity and 44.2% less parameter cost

 Preprint: https://arxiv.org/abs/2209.10098
 Open-source codes: https://github.com/JeremieMelo/NeurOLight

https://arxiv.org/abs/2209.10098
https://github.com/JeremieMelo/NeurOLight
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