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Abstract: Optimization methods are frequently exploited in the design of silicon photonic
devices. In this paper, we demonstrate that pushing the objective function to its minimum during
optimization often results in devices that gradually become more sensitive to perturbations of
design variables. The dominant strategy of selecting the design with the smallest objective
function can lead to fabrication failure or yield loss due to manufacturing process variations.
To address this issue, we propose an intuitive selection criterion that can identify designs not
only possessing small objective functions but that are also robust to variations. Our simulation
results on the Y-splitter, direction coupler, and bent waveguide designs demonstrate that the
proposed method can achieve 2x higher coverage of robust designs with almost negligible run
time, compared to the two baseline methods.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Due to its higher bandwidth and lower power consumption compared to electronic circuits,
integrated silicon photonics has attracted a great deal of attention. Many research efforts have
been devoted to this emerging field from various perspectives including material science [1,2],
photonic circuit architecture [3–5], numerical methods [6,7], and optimization techniques [8–13].

Among these sub-fields, photonic device optimization (also known as inverse design [8–16])
is one appealing and active branch. It starts by parameterizing the shape of a photonic device via
a multi-dimensional design variable (i.e., a column vector), and next defines an scalar objective
function capturing the design goal. After minimizing the cost/objective function with respect to
the design variable, the optimal design is chosen as the one with the smallest objective value
among all designs visited by the optimization routine. Generally, the optimization techniques
used in the literature of photonic device optimization can be classified into two categories: (i)
gradient-free methods [17–19], and (ii) gradient-based methods [12,13]. Gradient-free methods
usually rely on genetic algorithm, particle swarm optimization [17], or Bayesian optimization
[16,20]. On the other hand, gradient-based methods attempt to make gradient information
available during the optimization, so that gradient descent methods can be applied. The adjoint
method is the mainstream choice in terms of how to calculate gradient [12,13].

However, an important piece is missing from the present discussion — how robust is the opti-
mized design under perturbations of design variables? It is well-known that manufacturing
process variations [21–25] (such as line edge roughness [25]) can cause the fabricated device
shape to deviate from the desired design. Thus, to make the optimization method of practical
utility, we must ensure that the optimized design is relatively robust to the perturbations of design
variables; otherwise, it is likely that the optimized design will function erroneously due to the
introduced variations during fabrication [20,26].

In this paper, we first demonstrate that when pushing the objective function to its minimum
during an optimization, the optimized design gradually becomes more sensitive to perturbations
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of design variables. Motivated by this observation, we propose an intuitive selection criterion
that can identify designs not only possessing small objective functions, but that are also robust to
variations. Our analysis and methods are presented under the framework of Bayesian optimization.
As will be demonstrated later, this choice is natural as the surrogate model learned in Bayesian
optimization enables us identify robust designs without any extra simulations. Our key is
to utilize the surrogate model to calculate second-order derivatives of the objective function
around the local minimum, which can be regarded as approximations to first-order derivatives of
device performances (i.e., a robustness indicator). Numerical simulations on directional coupler,
Y-splitter, and bent waveguide photonic devices verify our findings and demonstrate the efficacy
of our method compared to two baseline methods.

The remainder of this paper is organized as follows. In Section 2, we briefly review Bayeisan
optimization and motivate our research. Next, we propose our method in Section 3 and verify
its efficacy on three key sillicon photonic devices (i.e., directional coupler, Y-splitter, and bent
waveguide) in Section 4. Finally, we conclude with Section 5.

2. Preliminary

The problem of photonic device optimization can be formulated as:

min
w∈Ω

L(w) (1)

where w ∈ Rd is a column vector representing the design variables, and Ω ⊂ Rd is the feasible
space that w can reside in. As an example, we can choose a series of grid points on the boundary
of the silicon photonic device and make their coordinates be the design variables w. Then L(·) is
a user-defined scalar function capturing the design intention (e.g., transmission loss of the device,
power splitting ratio, free spectral range), and evaluating a function value L(w) needs to invoke a
time-consuming physical simulation (e.g., FDTD, EME, or FDFD) once.

Bayesian optimization [16,20] is a black-box global optimization technique. Its major steps
are summarized in Algorithm 1. In Step 4, a Gaussian process regression (GPR) surrogate model
GP(w) is learned based on Γ, a set of pairs of design and objective values. When being fed an
input w, the GPR model returns a probabilistic prediction following a Gaussian distribution:

GP(w) ∼ N(µ,σ2) (2)

where µ = µ(w) ∈ R and σ = σ(w) ∈ R+ are both functions of w. Here µ(w) can be regarded as
an approximation to the real objective function L(w), and σ(w) as the prediction uncertainty. In
Step 5, we minimize a user-defined acquisition function. One common choice of the acquisition
function is lower confidence bound (LCB):

LCB(w) = µ(w) − ρ · σ(w) (3)

where ρ>0 is a user pre-defined constant. Refer to [27] for more details on Bayesian optimization.
Consider the optimization of a Y-splitter as illustrated in Fig. 1. Our design goal is to make the

normalized powers (with respect to the power of incident wave at port 1) transmitted at port 2
and port 3 both close to 0.5, and the power reflected back at port 1 close to 0. We desire that our
design satisfies the above requirements in a given wavelength range 1.5µm ≤ λ ≤ 1.6µm. To
this end, the objective function is defined as:

L =
1

3Nwav

Nwav∑︂
n=1
(p11

n )
2 + (p12

n − 0.5)2 + (p13
n − 0.5)2 (4)

where pij
n represents the power of the fundamental TE mode from port i to port j at the n-th

wavelength point. We run Bayesian optimization with d = 13, Nwav = 100, ρ = 0.3, Ninit = 30,
and Nmax = 200.
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Algorithm 1. Bayesian Optimization

Fig. 1. A simplified schematic of a Y splitter, (a) perspective view, (b) top view, and (c)
cross-section view.

After Bayesian optimization terminates, we deliberately select two optimized designs from Γ
and plot their shapes and performance curves in Fig. 2. Although the top design possesses a
slightly smaller objective value, its blue solid p12 curve (i.e., without perturbations) is similar to
that of the design in the bottom row. Moreover, when perturbations are present, the top design
degrades much more compared to the bottom design.

Figure 2 demonstrates a phenomenon that during optimization, the objective value is pushed to
a minimum, but the optimized device becomes more vulnerable to perturbations. To further justify
this finding, we perform two simulations for every design w ∈ Γ after Bayesian optimization
finishes. One simulation is performed at the desired w, recording {p12

n |n = 1, 2, . . . , Nwav}. The
other is at the +5% relative perturbed w′ = (1 + 5%)w, recording {p12,′

1 |n = 1, 2, . . . , Nwav}.
Note that here +5% is just for illustration. In reality, this value should be set according to the
variation of photonic devices that the specific manufacturing process introduces. Then we plot
the maximum p12 change, i.e., maxNwav

i=1 |p
12,′
i − p12

i |, along with the objective value L for all 200
designs visited by Bayesian optimization in Fig. 3. As shown in the right figure, comparing the
designs in the yellow and red circled regions, we find that they have similar objective values if
viewing vertically, while those in red are much more robust to perturbations than those in yellow.
Namely, the designs in the red circle are more desirable than those in the yellow circle. Strictly,
the Pareto front [28] (i.e., the blue solid line in Fig. 3) shows the best values that we can achieve
when desiring both performance change and objective value to be small. Thus, we look for an
approach that can identify the designs on the Pareto front after Bayesian optimization finishes.
Furthermore, since the Pareto front has a shape close to a 90 degree angle, it is even better if the
proposed method can identify designs not only on the Pareto front, but also localized in the left
bottom.
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Fig. 2. We perform the iterative Bayesian optimization algorithm shown in Algorithm 1 to
optimize the Y splitter shown in Fig. 1. Two different designs obtained at iteration 192 (top
row) and at iteration 75 (bottom row) of Bayesian optimization are plotted. Compared to
the bottom design, the design in the top row appears later in the optimization routine and
achieves a better objective function value, but it is more susceptible to perturbations. For
clarity, p11 and p13 are omitted. The dashed p12 curves are obtained by perturbing all design
variable relatively by 5%, i.e., w← (1 + 5%)w.

Fig. 3. Scatter plot of max p12 change along with objective value L for all 200 designs in
Γ[20]. The right figure is a zoomed-in version of the left figure when L< = 0.0010. The
blue solid line shows the Pareto front [28], and the designs located on this line are known as
Pareto optimal. Additionally, the designs obtained at the 75th and 192nd iterations in Fig. 2
are also displayed on this scatter plot.
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When Fig. 3 is available, we can easily achieve this goal. However, building such a figure
requires us to run extra simulations after Bayesian optimization finishes. Namely, recall that in
Algorithm 1, we only know the objective values for designs w ∈ Γ, but not their performance
changes. Thus, if we wish to obtain the vertical coordinates of points in Fig. 3, we have to
run extra simulations at the perturbed values for every design in Γ after Bayesian optimization
finishes, which will double the algorithm run time. This naturally raises a question: How can
we identify robust optimized designs without extra simulations? In other words, under the
framework of Algorithm 1, how can we pinpoint designs on the Pareto front (or in the left bottom
red circle), with the limitation that we can only see horizontal coordinates in Fig. 3? The naive
way used in Step 8 of Algorithm 1 gives us the iteration-192 design (with the smallest objective
value, but the largest sensitivity), which does not work well as seen in the top row of Fig. 2.
Consequently, an efficient selection method to identify robust designs in Γ is our goal in this
paper.

3. Proposed method

In this section, we propose an intuitive and efficient method to address the aforementioned
problem. To begin, we assume that the objective function has the following form:

L =
1
N

N∑︂
n=1
(pn − tn)2 (5)

where tn is a constant specifying a given performance target (e.g., 0 and 0.5 in Eq. (4)), pn is some
performance of the photonic device relying on the design variable w ∈ Rd, and N is the number
of terms. We emphasize that this mean square error form of the objective function is generic and
can encode many design goals such as power splitting, transmission loss, wavelength-division
multiplexing, and resonance. In practical scenarios, the number of terms N can be significantly
large, as these pn values are associated with multiple ports (e.g., three ports in Eq. (4)) and
numerous frequency/wavelength points (e.g., Nwav in Eq. (4)). Thus, we assume that the GPR
model in Algorithm 1 only models the mapping from w to L, instead of w to each pn, to save
computational resources.

To compare the robustness of different designs, we need a robustness measure. For instance,
we can use the following sensitivity measure:

d∑︂
i=1

N∑︂
n=1
(
∂pn

∂wi
)2 (6)

as an indicator for robustness. To understand this quantity, we start from a first-order Taylor
expansion of the performance vector p = [p1, p2, . . . , pN] ∈ R

N at the desired w ∈ Rd:

p(w + ∆w) ≈ p(w) + J · ∆w (7)

where J ∈ RN×d is the Jacobian matrix, and its entry on the i-th column (i = 1, 2, . . . , N) and j-th
row (j = 1, 2, . . . , d) is ∂pi/∂wj. Defining ∆p = p(w + ∆w) − p(w) and rearranging the above
equation, we obtain:

∆p = J · ∆w (8)
When the L2 norm of ∆w is fixed to a constant a (i.e., | |∆w| |2 = a), we have:

| |∆p| |2 = | |J · ∆w| |2 ≤ a| |J| |2 ≤ a| |J| |F = a[
d∑︂

i=1

N∑︂
n=1
(
∂pn

∂wi
)2]

1
2 (9)

where | |J| |2 and | |J| |F represent the induced L2 norm and Frobenius norm of the Jacobian matrix
J, respectively. In Eq. (9), we use Eq. (8) and the definition of induced L2 norm, and then use the
inequality | |J| |2 ≤ ||J| |F and explicitly write out the Frobenius norm based on its definition.
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Here Eq. (9) states that under a perturbation with fixed L2 norm | |∆w| |2 = a, the change of
performance vector | |∆p| |2 is upper bounded by a| |J| |F . In other words, | |J| |F could measure the
robustness of p under perturbation of w, pessimistically though. This motivates us to choose∑︁d

i=1
∑︁N

n=1(
∂pn
∂wi
)2, the squared Frobenius norm of J, as the robustness indicator. We emphasize

that this choice is not unique, and that [
∑︁d

i=1
∑︁N

n=1 |
∂pn
∂wi
|k]

1
k (∀k ∈ {1, 2, . . .}) could work as

robustness indicator as well. However, our present choice is the most convenient to approximate
as demonstrated later.

If we can evaluate this indicator for all designs, then we can address the problem by selecting
designs with both small objective and small indicator value. However, the challenge here is that
without extra simulation at the perturbed design point, we cannot evaluate this indicator value.
Our key idea is simple: we seek to find a related metric that can be easily evaluated with the
GPR model, and that is an approximation to the above robustness indicator.

To find such a metric, let us consider a well-optimized design wopt that can achieve L(wopt) ≤ ϵ ,
where ϵ is a very small positive constant representing a user-defined “good design” threshold.
Then for this design, we can derive:

ϵ ≥ L(wopt) =
1
N

N∑︂
n=1
(pn − tn)2 ≥

1
N

max
n
(pn − tn)2 (10)

by noticing that all terms inside the summation are no smaller than zero. This further gives:

max
n
|pn − tn | ≤

√
Nϵ . (11)

Intuitively, this says that for a well-optimized design, its residue term |pn− tn | should be smaller
than
√

Nϵ for all n = 1, 2, . . . , N.
Next, we calculate the second derivative of L with respect to the i-th design variable (where

i = 1, 2, . . . , d):
∂2L
∂w2

i
=

2
N

N∑︂
n=1

[︄
(
∂pn

∂wi
)2 + (pn − tn)

∂2pn

∂w2
i

]︄
. (12)

If we move the first term on the right-hand side to the left and denote an intermediate variable
ri =

∂2L
∂w2

i
− 2

N
∑︁N

n=1(
∂pn
∂wi
)2 for calculation simplicity, then we can derive:

|ri | =

|︁|︁|︁|︁|︁ ∂2L
∂w2

i
−

2
N

N∑︂
n=1
(
∂pn

∂wi
)2

|︁|︁|︁|︁|︁ =
|︁|︁|︁|︁|︁ 2N N∑︂

n=1
(pn − tn)

∂2pn

∂w2
i

|︁|︁|︁|︁|︁
≤

2
N

N∑︂
n=1

|︁|︁|︁|︁|︁(pn − tn)
∂2pn

∂w2
i

|︁|︁|︁|︁|︁ = 2
N

N∑︂
n=1
|pn − tn | ·

|︁|︁|︁|︁|︁∂2pn

∂w2
i

|︁|︁|︁|︁|︁
≤

2
N

N∑︂
n=1

√
Nϵ ·

|︁|︁|︁|︁|︁∂2pn

∂w2
i

|︁|︁|︁|︁|︁ = 2
√
ϵ

√
N

N∑︂
n=1

|︁|︁|︁|︁|︁∂2pn

∂w2
i

|︁|︁|︁|︁|︁ .

(13)

Built upon the above derivation, we can obtain:|︁|︁|︁|︁|︁ d∑︂
i=1

ri

|︁|︁|︁|︁|︁ ≤ d∑︂
i=1
|ri | ≤

2
√
ϵ

√
N

d∑︂
i=1

N∑︂
n=1

|︁|︁|︁|︁|︁∂2pn

∂w2
i

|︁|︁|︁|︁|︁ ≤ 2d
√

NϵB (14)
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where we have defined B as the maximum of all second derivatives, i.e., B = maxi,n |
∂2pn
∂w2

i
|. Now

if we write out the summation of ri, we observe:

d∑︂
i=1

ri =

d∑︂
i=1

[︄
∂2L
∂w2

i
−

2
N

N∑︂
n=1
(
∂pn

∂wi
)2

]︄
=

d∑︂
i=1

∂2L
∂w2

i
−

2
N

d∑︂
i=1

N∑︂
n=1
(
∂pn

∂wi
)2 .

(15)

Combining this with Eq. (14), we obtain the key inequality:|︁|︁|︁|︁|︁ d∑︂
i=1

∂2L
∂w2

i
−

2
N

d∑︂
i=1

N∑︂
n=1
(
∂pn

∂wi
)2

|︁|︁|︁|︁|︁ ≤ 2d
√

NϵB (16)

which further simplifies to:

|
N
2

d∑︂
i=1

∂2L
∂w2

i⏞ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ⏞
SED metric

−

d∑︂
i=1

N∑︂
n=1
(
∂pn

∂wi
)2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

robustness indicator

| ≤ d
√
ϵN

3
2 B . (17)

Since the GPR model GP(w) built in Bayesian optimization is an approximation to the
mapping L(w), the first term on the left-hand side of Eq. (17) can be approximated using the
GPR model by numerical differentiation. Namely, we can approximate the second derivative of a
scalar function g(w) by ∂2g

∂w2 ≈
g(x+∆x)+g(x−∆x)−2g(x)

∆x2 with ∆x→ 0. Alternatively, if the GPR model
is implemented in a programming language which supports automatic differentiation (such as
Python with Pytorch, Jax, or Autograd add-on), then automatic differentiation is available. For
later simplicity, we will denote this term as SED, short for sum of second-order derivatives.

The second term on the left-hand side of Eq. (17) is the sum of all squared first-order derivatives
of pn with respect to wi, our desired robustness indicator. In other words, Eq. (17) provides a
remarkable relationship between what we can calculate and what we desire: their discrepancy
is upper bounded and related to the “good design” threshold ϵ , the number of terms N in the
objective function, the dimension d of the design variable, and the maximum second derivative
absolute value B. Most importantly, if ϵ → 0, the discrepancy goes to zero and we can regard
SED = N

2
∑︁d

i=1
∂2L
∂w2

i
as the robustness indicator. Motivated by this finding, we propose our robust

design selection method in Algorithm 2.

Algorithm 2. Robust Design Selection
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In Step 1, we set the value of ϵ and define the level of Pareto front [28] Npl (e.g., Npl = 2).
In Step 2, we narrow down consideration only focusing on those designs with performance
L ≤ ϵ . In Step 3, we use the GPR model GP(w) to numerically approximate SED(w). Next
in Step 4, due to the choice of ϵ as well as numerical error, we might get SED(w)<0 for some
w ∈ Θcand. Ideally, this would not happen since we hope SED(w) works as an approximation to∑︁d

i=1
∑︁N

n=1(
∂pn
∂wi
)2, which is always non-negative. As a simple heuristic remedy in cases where this

does occur, we discard those designs with negative SED(w) values. Then at Step 5, we go into
an iteration, where in the n-th iteration, a set Θn containing a few designs will be returned. In
Step 6, we select the Pareto optimal [28] designs from Θcand based on the metric (L(w), SED(w)).
Intuitively, this is to say scatter all the values {(L(w), SED(w))|w ∈ Θcand} with L and SED as
the horizontal and vertical coordinates, respectively, onto a figure, and then choose all w whose
coordinates (L, SED) are located at the most bottom left (see Fig. 3 as an example). Since our
method involves approximations, it is useful to perform several rounds (i.e., Npl>1) and identify
several levels of Pareto optimal designs. We will explain in details the benefit of multiple round
later in Section 4.

Several important things need to be clarified here. First, there are two main sources of
approximations which might introduce error: (i) the SED metric shown in Eq. (17) is calculated
based on the GPR model GP(w) while the GPR model itself is an approximation to the real
function mapping L(w), and (ii) the SED metric is employed to approximate the desired robustness
indicator. The first issue (i) is mitigated as the number of samples in Γ increases, while the
second issue (ii) is alleviated by selecting a small ϵ .

Second, in implementing the calculation of SED(w), the constant factor N
2 can be neglected.

Because our primary concern is to compete the values of SED(w1)with SED(w2) for two different
designs w1 and w2, any positive constant scaling factor will not affect the result, as only the
relative order matters.

Third, we discard those designs with negative SED(w) values in Step 4, because the robustness
indicator in Eq. (17) is always non-negative, and as its approximation, the SED metric should also
be non-negative. However, a bad approximation could happen when ϵ or B is large according to
Eq. (17), and such negative values respectively correspond to a design with large objective value
or large second-order derivatives. Note that the remedy strategies are not unique. For instance,
we could adopt SED(w) =

∑︁d
i=1 max(0, ∂2L

∂w2
i
) in the definition to guarantee positiveness. In all

simulation examples considered in this paper, we empirically found that the discarding strategy
works better than setting negative second-order derivatives to zero.

Fourth, finding Pareto optimal designs in Step 6 is motivated by Fig. 3. The desired designs are
usually located on the Pareto front in the scatter plot of performance p12 change versus objective
value L. Without extra simulations, we do not know the values of performance p12 change, but
instead, we have the SED metric. Thus, we fall back to identifying those Pareto optimal designs
on the scatter plot of SED versus L. This is reasonable as long as SED is a good approximation
to p12 change, which indeed is the case, as implied by Eq. (17).

Fifth, our derivations rely heavily on the objective function having a mean square error form
as shown in Eq. (5). For instance, the second-order derivatives shown in Eq. (12) only hold
true under a mean square error form. Although the specifics will differ, our derivations can be
extended to objective functions like L = 1

N
∑︁N

n=1 |pn − tn |k for any positive integer k, where k = 2
corresponds to the case considered in this paper. Dealing with other objective function forms
might require substantially different derivation flows. Again, we re-iterate that the objective
function shown in Eq. (5) is generic and can encode many design goals.

Sixth, we emphasize that the proposed robust selection scheme is intended to work with
gradient-free optimization methods that utilize surrogate models such as Bayesian optimization.
For gradient-based optimization methods, we have the gradient values ∂pn

∂wi
so that we can directly

calculate the robustness indicator in Eq. (17) without needing the SED metric.
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Last, but not least, we want to mention that incorporating robust design selection into Bayesian
optimization is a natural choice since the surrogate GPR model enables us to conveniently
calculate derivatives. This is impossible for other gradient-free optimization methods without a
surrogate model. Moreover, the design variable in Bayesian optimization is chosen as a series
of grid points on the boundary of a silicon photonic device, so that their perturbations have a
physical meaning — corresponding to shape perturbation. In contrast, for gradient-based adjoint
optimization, their design variable represents the permittivity of the design region. Although
the derivative of device performance with respect to design variable is available, it does not
directly correspond to any process variation (e.g., device width/height variation) introduced
during manufacturing.

4. Numerical results

To verify our method, we perform numerical simulation on Y-splitter, directional coupler, and
bent waveguide devices. All photonic devices are defined in 3D and simulated using Lumerical
FDTD on a RedHat Linux server with 3TB memory and 16 CPU cores. The algorithm is
implemented using Python. In the Y-splitter example, we will show that the calculated SED
metric might be negative and our heuristic remedy (i.e., discarding designs with negative SED
value) is sufficient. Later in the directional coupler and bent waveguide examples, we explain
why we need Algorithm 2 to be iterative and have several levels of Pareto front (i.e., Npl>1).

4.1. Y-Splitter

In this subsection, we verify our method on the Y-splitter example shown in Fig. 1. We choose
ϵ = 0.0010 following Fig. 3. We choose Npl = 1 in this example, so that only the first-level of
Pareto optimal set Θ1 will be returned. As shown in Fig. 4, we use the GPR model GP(w) to
numerically approximate SED(w) for those designs w with L(w) ≤ ϵ . We observe that SED<0
usually occurs when L is relatively large, which coincides with our previous expectation. After
discarding those designs with SED<0, we identify the Pareto front and construct Θ1. Next, as
shown in Fig. 5, we scatter all identified designs onto the golden performance change figure.
We observe that a large portion of our points are located at the most bottom left as desired.
Remarkably, most of our identified designs (i.e., red dots) are located on the real Pareto front (i.e.,
the blue solid line in Fig. 3), justifying SED as a substitution of the unknown max p12 change,
and demonstrating that our methods works well in this example.

Fig. 4. Left: Scatter plot of (L(w), SED(w)) for all w with L(w) ≤ ϵ = 0.001. Right: Keep
those designs w with SED(w) ≥ 0. The red solid line shows the Pareto optimal designs we
find, making up of Θ1.

To better understand the effectiveness of our method, it is educational to compare it with
other baseline methods. Under the condition of no extra perturbed simulations, there are two
reasonable strategies: (i) choosing designs with smallest objective values, and (ii) randomly
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Fig. 5. Scatter plot of our identified designs w ∈ Θ1 (i.e., the red dots) onto the golden
performance change figure (i.e., the right side in Fig. 3)

choosing designs with objective values smaller than ϵ . We carry out these two strategies and
scatter the resulting designs by each of these alternatives onto the golden performance change
figure, respectively. The results are shown in Fig. 6. Clearly, counting the red, cyan, and pink dots
inside the desired region, we see that our proposed method performs the best. Moreover, when
the number of simulations Nmax becomes even larger (i.e., pushing objective function harder to
the minimum), then the cyan dots in the left of Fig. 6 will be more squeezed out of the desired
region. On the other hand, randomly selecting designs bears too much uncertainty. Table 1
summarizes performance of different methods on this Y-splitter example. Our method identifies
10 designs, and seven of them are located in the desired region as shown in Fig. 5. Moreover,
since only the GPR model is used to approximate the robustness indicator, the algorithm finishes
in less than 10 seconds. Selection based on smallest objective value and random selection also
run fast, but with fewer designs residing in the desired region. Alternatively, the golden method
needs to invoke one perturbed simulation for each design with objective value L smaller than ϵ .
In our experiment, 83 designs satisfy the requirement L ≤ ϵ , and each simulation takes about
150 seconds, resulting in an overall run time of about 3.45 hours. We conclude this example by
emphasizing that since in Fig. 1, we choose the design variable w as the Y-coordinates of several
grid points in the design region, perturbing w corresponds to width variation in manufacturing.
Our method identifies optimized designs robust to such.

Fig. 6. Left: Select the designs with the smallest objective values. Right: Randomly select
designs. For fairness, the number of cyan (or pink) dots here is the same as that of red dots
in Fig. 5.

4.2. Directional coupler

In this subsection, we consider applying our method to the design of a 50% : 50% directional
coupler (DC) shown in Fig. 7. We use the first entry of w to represent the height h, and its
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Table 1. Performances of different methods on Y-splitter

Ours Golden Smallest Random

# Extra Sims. 0 83 0 0

Runtime < 10 s 3.45 hr < 10 s < 10 s

Coverage 7 / 10 10 / 10 3 / 10 2.8 ± 0.7a / 10

aFor fair comparison, the coverage metric for random selection is calculated after running
the experiments independently five times, and reported in the format ‘mean’±‘std’.

remaining (d − 1) entries are used to encode the design flexibility in the XY plane. Specifically,
we uniformly choose (d − 1) grid points on the top left arm. Their X-coordinates are fixed once
the grids are generated, while their Y-coordinates are regarded as our design variables. The
objective function in this example is defined as:

L =
1

2Nwav

Nwav∑︂
n=1

[︁
(pt

n − 0.5)2 + (pc
n − 0.5)2

]︁
(18)

where pt
n and pc

n represent, respectively, the normalized power of the fundamental TE mode
at the through and cross port at the n-th sampled wavelength point. We implement Bayesian
optimization with d = 11, ρ = 0.3, Ninit = 40, and Nmax = 600. In this example, we set
ϵ = 0.0014 and choose Npl = 3 to explain the loop of Algorithm 2. The results are shown in
Figs. 8–10.

Fig. 7. A simplified schematic of a rib-waveguide-based directional coupler (DC); (a)
perspective view; (b) top view; and (c) cross-section view.

As shown in Fig. 8, we see that the red solid line is located at the most bottom left, and then
the yellow and green lines follow. The motivation to use a multiple-level Pareto front is two fold.
First, as shown in this example, with only one level, there are five identified designs (red dots).
The characteristics of the robust design selection problem, i.e., the trade-off between objective
value and robustness metric, indicates that there are multiple designs of interest. When sent to
manufacturing, we can utilize this property and simultaneously fabricate a few designs on one
single wafer [23]. However, if we use only one single level Pareto front, we only have five designs
in this case, which might be fewer than wanted. The second reason is that since our method is
still an approximation, one single level Pareto front might be insufficient and miss some good
robust designs. These can be captured by succeeding levels. Compared to the strategies shown in
Fig. 10, our method again performs the best in this example.

4.3. Bent waveguide

In this subsection, we consider the design of a bent waveguide as shown in Fig. 11. A bent
waveguide is usually used in photonic circuits to route light, and low loss is highly desired. In this
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Fig. 8. Left: Scatter plot of max pt and pc change under a relative +5% change (i.e.,
w← (1 + 5%)w) along with objective value L for all 600 designs in Γ. Right: We calculate
the SED metric and keep those designs w with SED(w) ≥ 0. The red, yellow, and green
solid lines are, respectively, the identified first, second, and third-level Pareto front, and these
designs make up Θ1, Θ2, and Θ3.

Fig. 9. Scatter plot of designs w ∈ Θ1,Θ2,Θ3 onto the golden performance change figure
(i.e., the left side in Fig. 8). Designs from Θ1, Θ2, and Θ3 are represented by 6 red, 9 yellow,
and 8 green dots, respectively.

Fig. 10. Left: Select the designs with the smallest objective values. Right: Randomly
select designs. For fairness, the number of cyan (or pink) dots here is the same as the sum of
red, yellow, and green dots in Fig. 9.



Research Article Vol. 32, No. 21 / 7 Oct 2024 / Optics Express 37597

example, we fix the width of the bending and evenly choose d grid points in polar coordinates.
Specifically, the angles of grid points are determined once we set d = 6, and their radii are the
design variables. The objective function in this example is defined as:

L =
1

Nwav

Nwav∑︂
n=1
(pn − 1)2 (19)

where pn represents the normalized power of the fundamental TE mode at the output port at
the n-th sampled wavelength point. We implement Bayesian optimization with d = 6, ρ = 0.3,
Ninit = 40, and Nmax = 160. We set ϵ = 0.003 and choose Npl = 2. The results are shown
in Table 2. As in the previous examples, compared to the strategies of minimum selection or
random selection, our method again performs the best.

Fig. 11. A simplified schematic of a rib-waveguide-based directional coupler (DC); (a)
perspective view; (b) top view; and (c) cross-section view.

Table 2. Performances of different methods on bent waveguide

Ours Golden Smallest Random

# Extra Sims. 0 63 0 0

Runtime < 10 s 32.5 mins < 10 s < 10 s

Coverage 10 / 18 18 / 18 7 / 18 6.5 ± 2.1a / 18

aFor fair comparison, the coverage metric for random selection is calculated after running
the experiments independently five times, and reported in the format ‘mean’±‘std’.

5. Conclusions

In this paper, we demonstrate that during optimization of photonic devices, as the objective
value is gradually pushed to a minimum, the design can become more sensitive to perturbations.
We propose a robustness metric SED, short for sum of second-order derivatives, that can be
numerically approximated using the Gaussian process regression model provided in Bayesian
optimization. Next, using the pairs of SED and objective values, we extract Pareto optimal
designs that are shown to possess small objective value and good robustness simultaneously. Our
simulation results verify that the proposed method can achieve high coverage of robust designs
with almost negligible run time. The suggested selection criterion can be seen as a straightforward
extension to identify robust designs after the completion of a conventional Bayesian optimization.
Disclosures. The authors declare no conflicts of interest.
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be obtained from the authors upon reasonable request.
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