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The rapid growth in computing demands, particularly driven by artificial intelligence applications, has begun to exceed
the capabilities of traditional electronic hardware. Optical computing offers a promising alternative due to its paral-
lelism, high computational speed, and low power consumption. However, existing photonic integrated circuits are
constrained by large footprints, costly electro-optical interfaces, and complex control mechanisms, limiting the practi-
cal scalability of optical neural networks (ONNs). To address these limitations, we introduce a block-circulant photonic
tensor core for a structure-compressed optical neural network (StrC-ONN) architecture. The structured compression
technique substantially reduces both model complexity and hardware resources without sacrificing the versatility of neu-
ral networks, and achieves accuracy comparable to uncompressed models. Additionally, we propose a hardware-aware
training framework to compensate for on-chip nonidealities to improve model robustness and accuracy. Experimental
validation through image processing and classification tasks demonstrates that our StrC-ONN achieves a reduction in
trainable parameters of up to 74.91%, while still maintaining competitive accuracy levels. Performance analyses further
indicate that this hardware–software co-design approach is expected to yield a 3.56× improvement in power efficiency.
By reducing both hardware requirements and control complexity across multiple dimensions, this work explores a
pathway toward practical and scalable ONNs, highlighting a promising route to address future computational efficiency
challenges. ©2025Optica PublishingGroup under the terms of theOpticaOpen Access Publishing Agreement
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1. INTRODUCTION

Machine learning (ML) with deep neural networks (DNNs)
has transformed various aspects of science and technology [1],
including object recognition [2–4], autonomous driving [5],
natural language processing [6,7], and medical diagnosis [8,9].
Additionally, the emergence of large language models (LLMs) has
further demonstrated human-level intelligence in specific tasks
[10,11]. The unprecedented advancements of modern DNNs are
driven by rapidly expanding model sizes—with millions to tens
of billions of parameters—and increasing data volumes, which
allow for the extraction of intricate, high-level features needed
for complex tasks [1,11,12]. Notably, these improvements in
model performance have led to a surge in demand for computing
resources and memory access. DNNs typically comprise multiple
cascaded layers, where data are represented as vectors processed
through matrix-vector multiplications (MVMs) with correspond-
ing weights, which are the main contributors to time and power
consumption. To efficiently execute MVMs, hardware artificial
intelligence (AI) accelerators—including, but not limited to,
graphical processing units (GPUs), field-programmable gate arrays

(FPGAs) [13,14], and application-specific integrated circuits
(ASICs) [15]—have been widely developed by both industry
and academia. However, as integrated circuits scale to include
tens of billions of transistors operating at gigahertz (GHz), they
encounter saturated power efficiency, heat dissipation issues, and
limited bandwidth, making electrical processors unsustainable
for meeting surging demands [16]. Moreover, as semiconductor
processes advance to sub-nanometer nodes and approach the
inherent physical limitations of devices, the unreliability caused
by quantum uncertainties has become another bottleneck for
further scaling [16,17]. Pursuing higher computing density, power
efficiency, and scalability remains a persistent goal in developing
high-performance AI accelerators [18].

Due to these intrinsic bottlenecks, the exploration of novel
technologies beyond traditional electrical digital computing has
emerged as an attractive trend [19–24]. Among these, ONNs
based on photonic integrated circuits (PICs) are promising candi-
dates for AI accelerators. The inherent high computational speeds,
low power consumption, low latency, and high parallelism enabled
by the unique multiplexing techniques of optical computing can
effectively overcome the aforementioned issues [25]. Additionally,
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advances in silicon photonics allow for the implementation of
optical computing on low-cost PICs with high integration density
using CMOS-compatible fabrication processes. Over the past
decade, various PIC-based ONN prototypes have been presented,
demonstrating the realization of multilayer perceptrons (MLPs)
[22,23], convolutional neural networks (CNNs) [24,26,27], spike
neural networks (SNNs) [28], etc. However, a primary challenge
in contemporary PICs arises from the micron- to millimeter-scale
dimensions of on-chip photonic devices, which lead to unavoid-
able trade-offs between PIC scaling and chip footprint [25].
Furthermore, the peripheral electrical components for electro-
optical (E-O) modulation, data access, and conversion between
analog and digital domains boost power consumption, thereby
undermining the power efficiency benefits of optical computing.

To address these challenges associated with performing large-
scale MVMs on PICs, it is necessary to explore strategies that
extend beyond device- or circuit-level innovations. One critical
strategy is domain-specific hardware customization informed
by algorithm-level insights, which can significantly improve the
efficiency and scalability of photonic tensor cores (PTCs). Recent
research indicates that DNNs, especially CNNs, are often over-
parameterized with significant redundancy in their parameters
[19,29]. This redundancy leads to unnecessary power consump-
tion, prolonged runtimes, and increased memory usage, which
has driven extensive research into algorithm-level model compres-
sion techniques such as connection pruning [30,31], low-rank
approximations [32,33], and structured model designs [19,34].
These approaches have demonstrated substantial improvements
in hardware efficiency with minimal performance trade-offs,
making them highly relevant for optimizing optical computing
systems. While several ONNs employing compression techniques
have been proposed, these implementations, which use free-space
optics or conventional mesh structures [35,36], typically have
complex systems or large footprints with significant challenges for
calibration and precise programming. These factors collectively
restrict their ability to fully leverage the efficiency benefits that
novel algorithms might offer.

In this work, we advance the exploration of model compression
techniques for optical computing by introducing a customized
StrC-ONN architecture with the block-circulant photonic tensor
core (CirPTC). On the algorithmic side, StrC-ONN represents
weight matrices using block-circulant matrices (BCMs) with
restricted parameter spaces, effectively eliminating redundant
parameters and unlocking the potential for designing custom-
ized ONN structures to fully harness their efficiency. From the
hardware perspective, a compact crossbar array is specifically
designed to implement BCMs, thereby minimizing E-O interface
costs while achieving high area and power efficiency. Notably,
CirPTC imposes structured compression directly through its
circuit topology, and the cascading of its building blocks enables a
one-shot calibration mechanism. This feature streamlines device
characterization, whereas most existing ONN systems still rely
on labor-intensive iterative calibration of modulators. To address
on-chip nonidealities, we propose and experimentally deploy a
hardware-aware training framework that compensates for these
imperfections, enhancing model performance and robustness. We
experimentally demonstrate the image processing capabilities of
our design using convolutional kernels. Furthermore, we evaluate
the end-to-end accuracy of StrC-ONN on various image classifica-
tion tasks, including the SVHN, CIFAR-10, and COVID-QU-Ex

datasets. This approach achieves up to a 74.91% reduction in
trainable parameters, active modulators and memory require-
ments, while maintaining comparable accuracy to conventional
general matrix multiplication (GEMM)-based digital DNNs.
Performance analysis reveals that the design can achieve a com-
putational density of 5.84 tera operations per second (TOPS) per
mm2, with a power efficiency of 17.13 TOPS/W—representing a
3.56× improvement enabled by the dedicated hardware-software
co-design strategy—after appropriate scaling and a unique spectral
folding technique. Therefore, the hardware–software co-designed
architecture and CirPTC provide a viable pathway toward the
practical deployment of optical computing systems, enhancing
efficiency and practicability while laying the groundwork for
next-generation AI hardware.

2. OPERATION PRINCIPLE

A. ONN with Structured Compression

The structured compression, compared to other compression
techniques, reduces both computational complexity and storage
complexity while maintaining a regular network connection topol-
ogy. An M × N BCM, for instance, is composed of P × Q blocks,
each order-l square matrix following the circulant format. As illus-
trated in Eq. (1), the first-row vector (primary vector) in a circulant
matrix wi j = [w1,i j , w2,i j , . . . , wl ,i j ] contains all independent
parameters, with subsequent rows being circulant reformations
of it. Intuitively, compared to general matrices, block-circulant
matrices reduce the number of independent parameters to MN/l :

Wblock =

N=Q×l︷ ︸︸ ︷
W11 W12 . . . W1q

W21 W22 . . . W2q
...

... Wi j
...

W p1 W p2 . . . W pq


 M = P × l;

Wi j =


w1,i j w2,i j . . . wl,i j

wl,i j w1,i j . . . wl−1,i j
...

...
. . .

...
w2,i j w3,i j . . . w1,i j

 . (1)

In DNNs, the mapping from an input vector x ∈ RN to an
output vector y ∈ RM across two successive layers is typically for-
malized as y= σ(W · x + b), where W ∈ RM × N is the weight
matrix, b ∈RM is a bias vector, and σ(·) is an element-wise non-
linear activation function. Crucially, regardless of whether the layer
is fully connected, convolutional, recurrent, or attention-based,
its core computation can be reformulated as one or more MVMs
via appropriate matrixization techniques. Therefore, the block-
circulant compression technique applies universally to the weight
matrices of diverse architectures. It is essential to recognize that
while the StrC-ONN shares a similar connection topology with
conventional DNNs, there is no direct correspondence or conver-
sion between the two architectures. During training, each weight
matrix is constrained to a block-circulant format: an M × N
matrix is partitioned into circulant blocks of size l , and the learning
task reduces to identifying the length-l vector that uniquely defines
each circulant block. Owing to this characteristic, the StrC-ONN
could improve efficiency across multiple dimensions. First, the
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compression strategy significantly reduces the number of model
parameters and memory usage. During offline training, the learn-
able tensor is instantiated as a set of primary vectors, and autograd
accumulates gradients only for P × Q × l explicit elements dur-
ing backward propagation, rather than for every element in the full
weight matrix. From a hardware perspective, it decreases the num-
ber of active E-O modulators required for weight programming
and the control complexity for on-chip inference. Additionally,
this strategy reduces memory consumption for weight storage
and decreases data access demands on hardware resources, such as
digital-to-analog converters (DACs) and associated transmitter
circuitry. However, these advantages come with a restricted param-
eter space, presenting a potential trade-off. For instance, a small
block size in the BCM yields a lower compression ratio, while a
larger size offers substantial compression but may result in accuracy
degradation. Related research has demonstrated the mathemati-
cal rigor of this approach [37]. Specifically, structured networks

preserve the universal representability of DNNs, allowing them to
approximate or represent functions with complexity comparable
to those handled by uncompressed networks. Additionally, with
appropriate compression, structured networks maintain compa-
rable performance and accuracy across a wide range of tasks, which
has been demonstrated in electrical digital computing [19]. In this
work, we implemented the compression technique through a com-
pact PIC design that achieves high hardware and power efficiency
and experimentally validate its performance.

B. Operation Mechanism of CirPTC

The operation mechanism of CirPTC and the ONN training
framework are shown in Fig. 1. The primary vector w is encoded
into incoherent light intensity using serial microring resonators
(MRRs) operating at different wavelengths, which then physically
multiply with the input vector x encoded by Mach–Zehnder
modulators (MZMs). The CirPTC is characterized by a crossbar
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Fig. 1. General architecture of StrC-ONN and image convolution operations using CirPTC. (a) Transformation of convolution operations into MVMs
and the implementation of BCM on CirPTC. This conceptual illustration shows an input image with three channels perform convolution with Cout sets of
k × k ×Cin kernels (where k = 3). The 2-D flattened weight matrix W is configured as a BCM with 4× 4 circulant blocks. Pixels within the sliding win-
dow are partitioned into subgroups of length 4 after flattening and are then sent to the CirPTC. (b) General schematic of an order-l CirPTC with a N ×M
crossbar array. The output photocurrent is detected by an oscilloscope or ADC after amplification by the off-chip trans-impedance amplifier (TIA). Here,
different colors denote devices operating at different wavelengths. (c) The hardware-aware training framework for CirPTC-based ONN.
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switch array in which the switches operate at different wavelengths
following a block-circulant arrangement [Fig. 1(b)]. The switch
array maps the elements of a weighted vector to the outputs,
thereby directly implementing the structured configuration by
the circuit topology. By leveraging wavelength division multiplex-
ing (WDM), on-chip photodetectors (PDs) can autonomously
sum weighted elements at the output ports. Compared to ONN
architectures designed for GEMMs, the CirPTC requires only
M × N/l active MRRs to implement a M × N BCM, while
the optical switches in the crossbar array are “static” or even pas-
sive (see details in Supplement 1, Note 8) [24]. From a hardware
perspective, this configuration significantly reduces reprogram-
ming complexity and the number of DACs required for weight
encoding.

As mentioned, the compression mechanism requires parti-
tioning 2-D matrices and embedding structured constraints. The
operation for FC layers is straightforward because the connection
between the two layers can be directly represented by a weight
matrix. In convolutional layers, learnable kernels slide over the
input data, generating feature maps through convolution opera-
tions. Unlike FC layers, convolution operations share kernels and
focus on local areas, resulting in inherently sparse connections. To
perform convolution operations efficiently, we utilize the “im2col”
matrixization technique, which tiles all kernels and inputs into
large 2-D matrices, transforming tensor-based convolution opera-
tions into matrix–matrix multiplications [38,39]. As illustrated in
Fig. 1(a), each kernel comprises Cin channels with a dimension of
k × k ×Cin, and each kernel set corresponds to an output feature
map. For a convolution layer that includes Cout output features,
the kernels can be reorganized into a 2-D weight matrix W of size
Cout × (k × k ×Cin) by flattening kernels into a 1-D vector and
stacking them row-wise. Here, we constrain W to a block-circulant
format starting from the training stage, and the primary vector wi j

for each circulant block is encoded by N/l rails of serial MRRs.
Similarly, as the kernel slides across the input image with w× h
pixels, the corresponding pixels are rearranged into a column vector
of dimension (k × k ×Cin) and then stacked to create the input
matrix X . To perform MVMs with the circulant block, the column
vectors in X are partitioned into length-l subgroups. Based on this
approach, the convolution operation for one feature map translates
into (w− k + 1) · (h − k + 1) MVMs between a BCM and the
input vectors of length k2

×Cin.

C. Training Framework for CirPTC-Based ONN

As an analog computing platform, CirPTC inherently exhibits
various hardware-induced nonidealities, including truncated
resolution, crosstalk, and fabrication variances. Direct deployment
of ML models faces challenges in accurately capturing complex
chip behaviors, potentially leading to significant performance
degradation. To address these issues, implementing DNNs on
CirPTC with enhanced robustness requires a hardware-aware
training strategy based on actual measurements. However, train-
ing models directly using on-chip optical responses presents
an additional challenge, as the data behaves like a lookup table
(LUT), which is inherently non-differentiable. In this work, we
employ a hardware-aware training framework that incorporates
a differentiable PIC estimator (DPE). Furthermore, we embed
an adaptive coupling matrix that counteracts coherent crosstalk
within the crossbar array, thereby preserving model accuracy. The
general procedures of the training framework are summarized

in Fig. 1(c), with additional details provided in Supplement 1,
Note 7. Following quantization and dynamic noise injection,
the DPE operates in two modes: differentiable and lookup. We
exhaustively sweep a large set of vector combinations to construct
a LUT, then fit a surrogate model that approximates the on-chip
forward pass. This surrogate captures the dominant nonideal-
ities while remaining fully differentiable for backpropagation.
Experimental results demonstrate that this approach effectively
compensates for on-chip nonidealities, resulting in improved
inference accuracy compared to previous ONN training protocols,
such as simulation-based gradient approximation [22,40] and
derivative-free optimization [41,42]. Beyond off-chip training,
fully forward in situ training of ONNs has been demonstrated
in several pioneering works, showcasing the potential of updat-
ing network parameters directly on-chip [43,44]. While these
approaches reduce modeling errors effectively, it comes at the cost
of increased system complexity, power consumption, and chip
area usage for integrated monitors and real-time feedback loops. In
contrast, our hardware-aware offline training embeds actual device
nonidealities into the training loop, enhancing robustness to chip-
level variations without extra hardware overhead. This streamlined
strategy offers a practical, scalable solution for ONN deployment.
Moreover, the further combination of on-chip training protocols
and accepting the required hardware investment could further
improve overall accuracy.

3. RESULTS

A. Design of CirPTC

In this work, we designed and fabricated an order-4 CirPTC,
selecting this order as the optimal compromise between DNN
pre-training accuracy across different block sizes and overall
chip footprint (see details in Supplement 1, Note 7). The micro-
graph of the chip is shown in Fig. 2(a), with zoom-in figures of
its key components [Fig. 2(b)]. A continuous-wave (CW) mul-
tiwavelength input is coupled to the chip via an edge coupler. To
prevent crosstalk, the operational ranges of four MRRs are set to
be separated without overlapping in the spectrum, as illustrated
in Fig. 2(d). To enable hardware-efficient scalar multiplication
x ∗ ·wi j (where x ∗ is one element in x j ) within a single device, the
modulator for input encoding needs to modulate signals across
multiple wavelengths simultaneously [Fig. 2(e)]. This requires
modulators with broadband transmission characteristics, like
those provided by MZMs based on the phase-tuning mechanism
[25,45]. For the crossbar switch array, we employed 16 add-drop
MRRs, each interconnected with others through shared input
and drop bus waveguides along the same row and column. Each
MRR is calibrated to a designated wavelength according to the
circulant configuration, thereby redirecting the appropriate ele-
ment from x ∗ ·wi j to the PDs. Finally, the PDs automatically
sum the signals on the column bus waveguide as photocurrent,
thereby completing the MVM operation. To avoid distortion of
the circulant block, each MRR needs to be calibrated to achieve
a uniform maximum output [gray dotted line in Fig. 2(f )]. The
primary advantage of the crossbar array is the small footprint of
MRR and the inherent sharing of waveguides, both of which
enhance compactness and scalability. Since these MRRs func-
tion exclusively as wavelength-dependent filters, their operating
statuses are fixed after calibration. Additionally, cascading each
building block enables a one-shot calibration mechanism that

https://doi.org/10.6084/m9.figshare.29360984
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Fig. 2. Schematic of an order-4 CirPTC. (a) Optical micrograph of the CirPTC, featuring five main building blocks. (b) Key optical components high-
lighted in a zoomed-in micrograph. (c) Electrical and optical package for the CirPTC. (d)–(f ) Illustrations of the operational mechanisms and data flow
within each building block of the CirPTC. Notably, to avoid spectral overlap, the modulation range for MRRs operating at 1563.0 nm is allocated to the
right half-branch of resonate peak, whereas the modulation ranges for the other MRRs are situated on the left branch. The on-chip measurement results
(dots in the background) and the fitting results based on physical models are shown in the lower part of figures. Due to the dark current of the photodetector
and the asymmetric, lossy coupling of the MRRs [46], a fixed “forbidden zone” (gray area) is established at each output port. However, this can be eliminated
through post-processing in the electrical domain. The transmission characteristics of other devices are provided in Supplement 1, Note 1.

minimizes the impact of dynamic nonidealities, such as thermal

crosstalk and loss, while simplifying control complexity. Therefore,

CirPTC proposes an efficient, customized PIC design through a

hardware–software co-design approach, rather than merely explor-

ing algorithmic characteristics in isolation. Further details about

the system calibration are provided in Supplement 1, Note 1.

For yield and cost considerations, the CirPTC utilizes thermo-

optic modulators from the foundry’s Process Design Kit (PDK),

with each device type having identical specifications. The ohmic

microheaters of MZMs and MRRs are programmed by a multi-
channel DAC. Since all MRRs are identical (exhibiting similar
resonant wavelengths at zero bias), the four operating wavelengths
selected—1545.5, 1551.0, 1560.5, and 1563.0 nm—are spaced
separately within a single free spectral range (FSR) to minimize
spectral crosstalk [Figs. 2(d) and 2(f )]. In future optimizations, the
radius of the MRRs can be customized to achieve configurations
with different resonant wavelengths, thereby further decreasing
power consumption. The on-chip photodetectors, along with
off-chip TIAs, convert the optical output to electrical voltage

https://doi.org/10.6084/m9.figshare.29360984
https://doi.org/10.6084/m9.figshare.29360984
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signals, which are then measured by oscilloscopes. The CirPTC is
mounted on a customized printed circuit board (PCB) and con-
nected to the control units via wire bonding [Fig. 2(c)]. To facilitate
calibration and monitoring, four monitor ports at the ends of the
horizontal bus waveguides are coupled to the fiber array. Due to
the cascading and independence of the building blocks, we can
measure the transmission characteristics of each device through
the on-chip photodetector or the monitor port. Based on measure-
ments and physical models of devices, we fitted the transmission
curves of MZMs and MRRs for subsequent demonstrations and
experiments [Figs. 2(d)–2(f )].

B. On-Chip Image Processing

To experimentally illustrate the aforementioned principle, we
performed on-chip image processing with convolutional kernels
that extract physical features from input images, thereby evaluating
both CirPTC functionality and on-chip MVM accuracy. Solely
for demonstration purposes, we implemented several kernels with
clear intuitive interpretations. Although CirPTC enforces a block-
circulant structure on the weight matrix, arbitrary kernels can still
be realized by mapping each im2col-flatten kernel vector to a single
column of BCM and then extending it with block-circulant format
(see Supplement 1, Note 5). We should note that this procedure
confines all meaningful weights to the designated column, with
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Fig. 3. Experimental results of the image processing on CirPTC. (a) Input images from the CIFAR-10 dataset processed with a 3× 3 blur kernel.
(b) Schematic of the experimental setup and test flow. Kernels are first block-circulant extended (for arbitrary kernels) and partitioned into multiple
4× 4 blocks. Each block and input vectors are then sent to CirPTC in sequential waveforms, controlled by the FPGA and a multi-channel DAC (c) Ideal
and experimental output waveforms for the RGB channels of “horse,” and the sampling rate of oscilloscope is 500 kHz (40 data points per symbol).
(d) Statistical analysis of the error between experimental and ideal feature maps for the CIFAR-10 dataset. (e) X-ray image and the feature maps extracted by
four different kernels. Due to the large volume of data, the sampling rate is reduced to 12.5 kHz.
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the remaining columns serving only as by-products of the BCM
representation. First, we demonstrate the convolution operation
on input images from the CIFAR-10 dataset using a 3× 3 blur
kernel [Fig. 3(a)], which results in a 12× 4 BCM with three rows
of padding. Given that the three channels (RGB) are convolved
with the same 2D blur kernel, they can be reorganized into an
input matrix of k2

× 3 · (n − k + 1)2, where k = 3 and n = 32.
Then, the input matrix X is encoded by an FPGA with a 4-bit
resolution and a time interval of τ = 80 µs, corresponding to a
data rate of 12.5 Kbaud [Fig. 3(b)]. Given the extensive weight
sharing in CNNs, the bottleneck of data rate primarily arises from
the limited output settling time of the DAC (20 µs) and the input
encoding bandwidth in the tens of KHz range. In future opti-
mizations, the throughput of CirPTC can be increased to GHz
levels by utilizing high-speed DACs and E-O modulators, such
as carrier-depletion and carrier-accumulation MZMs [25,47].
Figure 3(a) presents the on-chip convolution results of four images
(see Supplement 1, Note 5 for results of all images), and Fig. 3(c)
displays the experimental waveform alongside the expected values
(gray lines) for the “horse”. Each time slot in the waveform results
from the post-processing summation of the dot products of length-
4 subvectors from three groups. The feature maps extracted exhibit
a normalized average root mean square error (RMSE) of 0.0243
[Fig. 3(d)]. Additionally, the deviation between the testing and
ideal results typically follows a normal distribution. The deviation
is primarily attributed to internal coherent interference in the
crossbar array, associated with unexpected leakage from MRRs and
spectral crosstalk (further details are discussed in Supplement 1,
Note 6) [48].

Since the modulators in the CirPTC operate with an
amplitude-tuning mechanism, both the weights and inputs are
theoretically required to be positive. For ONNs, employing acti-
vation functions such as ReLU, sigmoid, or softmax could ensure
that the inputs of each layer remain non-negative. The full-range
weights can be achieved by two methods. The first method nor-
malizes W to positive values by introducing a reference matrix with
all weights set to 1/2 to shift the dynamic range. Specifically, an
additional wavelength channel λ∗ is used to carry input vector ele-
ments. After input encoding, this channel is redirected by an added
column of optical switches operating at λ∗. The photocurrent gen-
erated from this column serves as a reference and is subtracted from
the output signals of the remaining columns, thereby enabling
full-range computation with minimal hardware overhead and
single-shot input injection. Alternatively, W could be split into two
matrices based on the sign of its elements, with each matrix being
processed on CirPTC separately. One advantage of post-processing
subtraction is that it can automatically eliminate the influence of
dark current on the output range. Similarly, both methods can be
implemented using either spatial or time-domain multiplexing.
The spatial approach requires additional hardware resources, such
as balanced photodetectors [49,50], whereas time-domain mul-
tiplexing doubles the processing time and performs subtraction
digitally in the post-processing stage.

To further evaluate the capability of CirPTC to process full-
range weights, we mapped a chest X-ray (CXR) image (256× 256
pixels) from the COVID-QU-Ex dataset with a 4-bit resolution
[51], processing it with multiple 3× 3 kernels. Here, we employ
time-domain multiplexing, wherein the convolution kernels are
split into positive and negative parts, each consisting of three 4× 4
circulant matrices. Figure 3(e) shows the extracted features from

the CXR image, such as the edges of the human lung highlighted
by the vertical Sobel kernel.

C. CirPTC-Based ONN for Classification

In this work, we explore the performance of CirPTC on classifica-
tion tasks over three datasets: a simple CNN is applied to the street
view house numbers (SVHN) dataset, while a VGG-style neural
network is applied to the CIFAR-10 and COVID-QU-Ex datasets.
All convolutional and FC layers are implemented on the order-4
CirPTC, while batch normalization (BN), pooling, and nonlinear
activation are executed on digital processors. Here, the activation
control resolution is set to 4 bits, while the weight precision is
configured to 6 bits. The COVID-QU-Ex dataset comprises CXR
images from individuals diagnosed with COVID-19, those with
non-COVID-19 infections (such as other viral or bacterial pneu-
monia), and healthy controls. The feature maps shown in Fig. 4(a)
are obtained by reshaping the output back into 2D images, which
inherently contain inter-kernel dependencies and sparsity arising
from structured constraints in the block-circulant weight matrix.
For the three-category classification task, the CirPTC-based ONN
achieves a classification accuracy of 92.6%, with a sensitivity
of 96.3% and a specificity of 98.0% for COVID-19 diagnosis.
Furthermore, CirPTC-based ONN experimentally achieved over-
all accuracies of 80.04% and 88.08% on CIFAR-10 and SVHN
tasks, respectively [Figs. 4(b)–4(d)].

Additionally, we evaluated the model performance under vari-
ous configurations, comparing digital and optical approaches, as
well as GEMM-based and structure-compressed networks. As
shown in Fig. 4(e), the CirPTC-based implementation maintains
competitive performance, exhibiting only a 1.41% to 3.65%
accuracy drop compared to full-precision GEMM-based dig-
ital baselines while achieving up to 74.91% savings in model
parameters. Moreover, compared to a digital implementation with
circulant compression, the proposed hardware-aware training
strategy with DPE ensures that the accuracy drop is kept below 1%.
Note that the experiments and simulations indicate that crosstalk
and noise from the photonic chip tend to accumulate along the
forward path of the network, leading to increased deviation and
potentially significant performance degradation. The DPE can
mitigate this issue, particularly in ONNs with deep architectures.
However, more sophisticated modeling and quantification of
on-chip behavior may be necessary for modern large models.

4. DISCUSSION

A. Benchmark Analysis

This section evaluates the expected performance of our proposed
architecture through numerical analysis, including benchmarks
such as chip area, insertion loss, computing speed, power con-
sumption, and scalability. The details of the analysis are discussed
in Supplement 1, Note 8. Unlike the Von Neumann architecture,
PTCs can execute an MVM operation within a single clock cycle.
Defining an operation as either the multiplication or addition, the
throughput of an N ×M CirPTC can be evaluated by the number
of operations per second (OPS), which is quantified as

OPS= 2MN · fop, (2)

where fop represents the operational rate. Clearly, enhancing the
throughput can be achieved by implementing a larger matrix and
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Fig. 4. Experimental results of the CirPTC-based ONN for image classification. (a) Structure of StrC-ONNs with input images from multiple datasets,
illustrated with a schematic diagram representing a three-category classification task for the COVID-QU-EX dataset. Detailed descriptions of the StrC-
ONNs implementation are provided in Supplement 1, Note 7. (b)–(d) Confusion matrices for the three datasets evaluated. (e) Comparison of experimental
classification accuracies, with and without DPE-based hardware-aware training, against the simulated accuracies of digital structured DNNs and GEMM-
based DNNs using 32-bit floating-point precision.

increasing fop. However, engineering limitations and trade-offs
among benchmarks must be considered during the design process.
First, fop is dependent on the on-chip devices and the E-O/O-E
conversion process. The CirPTC prototype based on thermo-optic
devices that we demonstrated experimentally exhibits a tuning
speed of tens of KHz [52]. To fully harness the potential of optical
computing, operands must be programmed at high speed. To
achieve high-speed operation, free-carrier-effect-based MZMs
operating in carrier-depletion (reverse-bias p − n junction) or
carrier-accumulation/metal-oxide-semiconductor capacitor
(MOSCAP) modes can replace the thermo-optic MZMs for input
encoding in this proof-of-concept demonstration [25,53,54].
Unlike the dynamic input x , which updates with each clock cycle,
the weights can be shared and remain constant during the inference
phase. Therefore, we assume that the modulation speed of thermo-
tuned MRRs is sufficient to support the time-domain hardware
reuse required for DNNs. Additionally, another factor restricting
fop is the delay in PICs. To implement an MVM operation within
a single clock cycle, the system clock period 1/ fop should be no less
than the total latency of the CirPTC, which increases linearly with

the matrix size. Alternatively, clock synchronization techniques
could enable higher fop while preventing sampling errors [55].

The computing density, defined by the OPS divided by the
chip area, is 4.85 TOPS/mm2 for a 48× 48 CirPTC operating
at 10 GHz. Note that modulators based on the carrier effect typ-
ically require larger footprints than thermo-optic devices due to
their lower tuning efficiencies and the potential requirement for
traveling-wave electrodes to achieve high-speed modulation.

The total power consumption of CirPTC comprises the power
to drive the lasers, load operands (X and W), detect signals,
and the static power required to maintain PIC in the operating
state. For CirPTC, the static power consumption primarily arises
from calibrating MRRs to the desired operating wavelength and
maintaining the resonated state, which is negligible when using
customized MRRs or post-fabrication nonvolatile phase-trimming
techniques to correct fabrication variations [56]. Additionally,
depletion-mode/MOSCAP or nonvolatile devices can poten-
tially eliminate static power consumption [24]. Based on the
references and the experimental results [52,54], we estimate that
each MOSCAP MZM consumes 0.35 pJ per symbol, with each

https://doi.org/10.6084/m9.figshare.29360984
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MRR requiring 3 mW to maintain its weight. For output signal
detection, the ADC power consumption is 39 mW at 10 GHz and
194 mW at 25 GHz [57], while the TIA power consumption is
0.65 pJ/bit [58]. Despite the availability of high-speed receivers,
the high power consumption of the ADC could be the dominant
factor, reducing overall power efficiency [Figs. S17(b) and S17(f )].
The minimum required laser power must overcome the capaci-
tance and shot noise of the photodetector, as well as compensate
for the insertion loss encountered along the critical path of the
PIC [59]. Notably, the insertion loss of CirPTC in the critical path
increases linearly with matrix size (Fig. S15), resulting in an expo-
nential increase in laser power. As shown in Fig. S17(e), laser power
constitutes 43.14% of the total power when M = N = 64, and
power efficiency begins to decline. According to our calculations,
a 48× 48 CirPTC configuration achieves peak power efficiencies
of 9.53 TOPS/W. This achieves 1.98× power efficiency compared
to uncompressed MRR-based crossbar arrays. Beyond the on-chip
power consumption, the power required for storing and memory
reconfiguration should also be considered. In this work, the mem-
ory cost for storing and accessing the weight matrix, as well as the
power required to reconfigure active devices, is reduced by a factor
of l in order-l CirPTC compared to ONN architectures designed
for GEMMs.

In addition to the insertion loss, the scalability of CirPTC is
also constrained by the limited density of MRR resonant peaks on
the spectrum. Specifically, we encode the weights onto different
wavelengths and use WDM techniques to perform M × N MVM
operations across M WDM channels. To avoid errors stemming
from spectral crosstalk, the finesse of MRRs needs to accommodate
M resonant peaks with permissible overlap, which is evaluated
in terms of weight resolution. Based on modeling and numeri-
cal analysis, the required Q value for a 6-bit weight resolution is
2.49× 105 when M = 48 (Fig. S18). Although silicon MRRs
and microdisk resonators with high Q values above 2× 107 have
been widely reported [60–62], fabrication variation and the nar-
row electrical tuning range should be considered. It is also worth
noting that although this work focuses on linear tensor operations,
the PIC topology of CirPTC is capable of supporting on-chip
nonlinear activation, which is essential for neural network imple-
mentation. Specifically, the MZM used for input encoding exhibits
a quasi-sigmoidal nonlinear transmission curve. According to
our experimental results, the transmission characteristics of the
MZM align well with the physical model [Fig. 2(e)]. Therefore, the
on-chip nonlinearity can be parameterized and directly integrated
into the training framework, eliminating the need for additional
electrical-domain post-processing for nonlinear activation.

B. Spectral Folding

Note that the MRR in the crossbar array functions solely as a
wavelength-dependent switch. To further reduce the cross-
bar array size and enhance CirPTC performance, we propose a
spectral folding scaling approach. Specifically, by exploiting its
periodicity, a single MRR can redirect signals at different wave-
lengths across multiple FSRs. This approach enables an N ×M
crossbar array to perform the MVM of a BCM with dimensions
M × (r ·N) and a length-r · N input vector, where r is the fold
number [Fig. S19(a)]. Through spectral folding, the footprint
and loss of PIC will be further decreased, thereby improving
computing density and power efficiency. Numerical analysis
shows that with r = 4 and M = N = 48, CirPTC achieves a

computing density of 5.48 TOPS/mm2 and a power efficiency
of 17.13 TOPS/W (3.56× the power efficiency of uncompressed
MRR-based ONNs), respectively. The significant improvement
in power efficiency arises from increased operational throughput
without expanding the number of ADCs and TIAs, while the
thermal power consumption of the MRRs for weight program-
ming becomes the dominant factor [Fig. S19(b)]. By utilizing
depletion-mode/MOSCAP MRRs, this component of power can
be potentially eliminated and the power efficiency can be increased
to 47.94 TOPS/W. However, this method requires precise spectral
alignment of each MRR and more complex control schemes,
thereby necessitating advanced fabrication techniques capable of
achieving the tolerances required to counter device-to-device varia-
tion. The residual misalignments can be further compensated by
the available programming range of the weight banks or by adjust-
ments to laser power. Details of the spectral-folding technique are
provided in Supplement 1, Note 8, and Table S6 compares our
approach with state-of-the-art optical and electrical computing
architectures.

5. CONCLUSION

In this work, we propose CirPTC, a scalable photonic-electric
hybrid AI accelerator with a hardware-efficient ONN architecture
using a structured compression technique. We experimentally
demonstrate on-chip convolution processing of large-scale images.
Then, the StrC-ONN architecture is implemented on the order-
4 CirPTC for image classification tasks. By reasonable scaling
and a spectral folding approach, the proposed design achieves
3.56× power efficiency compared to uncompressed MRR-
based ONNs, while using ∼25%− 35% of model parameters,
active optical components, and memory usage. Additionally, we
employ a hardware-aware training framework incorporating the
DPE, which efficiently models the on-chip behavior of CirPTC,
accounting for nonidealities such as inherent crosstalk and noise,
thereby boosting the model robustness. Notably, CirPTC-based
ONNs with circulant structured compression achieve comparable
performance across multiple datasets to full-precision digital
GEMM-based DNNs, demonstrating negligible loss in accuracy.
Furthermore, the compression strategy and the DPE-based train-
ing framework can be extended to existing PICs, enhancing their
hardware and power efficiency. These findings offer a novel route
to overcoming the bottlenecks of optical computing, thus paving
the way for next-generation high-performance AI accelerators in
the post-Moore era.
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