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ABSTRACT  

Optical neural networks (ONNs) have gained significant attention as a promising neuromorphic framework due to their 
high parallelism, ultrahigh inference speeds, and low latency. However, the hardware implementation of ONN 
architectures has been limited by their high area overhead. These architectures have primarily focused on general matrix 
multiplication (GEMMs), resulting in unnecessarily large area costs and high control complexity. To address these 
challenges, we propose a hardware-efficient architecture for optical structured neural networks (OSNNs). Through 
experimental validation using an FPGA-based photonic-electronic testing platform, our neural chip demonstrates its 
effectiveness in on-chip convolution operations and image recognition tasks, which exhibits lower active component usage, 
reduced control complexity, and improved energy efficiency. 
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1. INTRODUCTION  
Machine learning with deep neural networks (DNNs) is exerting a growing influence across multiple aspects of our lives, 
encompassing applications such as image recognition, autonomous driving, and medical diagnosis. Furthermore, the 
emergence of large language models (LLM) has expanded the horizon of potential applications. With the continuous 
expansion of DNN model sizes and data volumes, there is an increasing demand for hardware accelerators capable of 
conducting high-speed, energy-efficient, and parallel multiply-accumulate (MAC) operations.[1] Among the various 
hardware accelerators designed for artificial intelligence (AI), integrated photonics is a promising technology as an 
efficient solution due to its ultra-high computational speed, low energy consumption, and high parallelism of light using 
unique multiplexing techniques.[2] 

Leveraging integrated photonic platforms, the fundamental operations of DNNs—data transfers and matrix-vector 
multiplications (MVMs)—can be implemented through the combination of passive optical components and active 
optoelectronic devices. Specifically, optical signals can be modulated and reconfigured in accordance with the 
transmission characteristics of photonic integrated circuits (PICs). Based on this approach, a range of ONN tensor cores 
and architectures have been developed, including the Mach-Zehnder interferometer (MZI) mesh,[3] weight banks,[4] and 
crossbar arrays based on microring resonators (MRR).[5] However, a significant challenge associated with the deployment 
of optical tensor cores is their substantial hardware cost. For instance, the implementation of a fully-connected layer with 
n inputs and m outputs requires O(m2+n2) or O(m×𝑛𝑛) active devices for GEMMs. Besides, the electrical components for 
E-O modulation and AD/DA conversion consume a substantial portion of energy, thus compromising the overall power 
efficiency of optical computing units. Addressing the aforementioned challenges, this paper introduces a block-circulant 
optical neuron (BCON) with fewer active components and enhanced hardware efficiency tailored for OSNNs. We 
experimentally demonstrate on-chip convolution operations and high accuracy on image recognition tasks with fewer 
trainable optical components. These results highlight the effectiveness and efficiency of the proposed OSNN architecture, 
offering a promising solution to fully harness the potential of optical computing. 

2. DESIGN AND WORKING MECHANISM 
Block-circulant-based Structured neural network 

Compared to general neural networks with arbitrary weight matrices, structured networks make trade-offs by pruning 
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portions of matrix representability and reconfigurability to reduce the number of parameters. Related studies indicate that 
appropriate pruning does not degrade the model's performance significantly.[6] As a structured architecture, a circulant 
matrix is defined as a square matrix where all row vectors consist of identical elements, with each row vector being 
cyclically shifted one element relative to its preceding row. In this work, we propose a block-circulant-based network, 
wherein the original weight matrix is divided into multiple square sub-matrix blocks, each of which is a circulant matrix, 
as illustrated in Figure 1.a. For the hardware implementation of the OSNN, the computational and hardware complexities 
can be reduced during both the training and inference phases, owing to parameter sharing within each circulant block. 

Design of electronic-photonic chip for block-circulant OSNN 

Based on this approach, an optical tensor core for block-circulant OSNN is developed, as shown in Figure 1.b. The 
elements of weight vector x are modulated by a series of cascaded MRRs operating at different wavelengths, and then 
physically multiplying with the input vector x modulated by MZIs. After circulant-matrix-specific reconfiguration by an 
MRR-based crossbar array, the output signals could be detected by photoreactors. Leveraging WDM technology, on-chip 
photodetectors can autonomously execute the summation of weight elements, realizing the dot product operation. 
Compared to conventional ONN architectures, BCON necessitates only n cascaded MRRs for modulating to implement 
the n×n weight block, with a constant bias across the crossbar array. This configuration will significantly reduce the control 
complexity and the number of DACs used for modulation. 

Based on the schematic, we tape out a 4×4 BCON fabricated by AIM Photonics. The chip micrograph, including its 
electrical and optical packaging, is shown in Figure 2.a. The test flow of BCON is as follows: the large weight matrix is 
partitioned into our 4×4 circulant-matrix blocks, and we use an FPGA to program the DACs to encode weights and input 
signal. Furthermore, a customized PCB has been developed for modulation and data collection purposes. The output 
photocurrents are amplified by a trans-impedance amplifier (TIA) before being transmitted to FPGA-based systems for 
data processing and subsequent training on a PC (Figure 2.b). To model the no-idealities such as fabrication errors, 
programming errors, crosstalk and noise, we employ an AI-assisted, hardware-aware training framework for OSNN 
training, with details disclosed in our previous work.[7] 

3. RESULTS AND DISCUSSIONS 

For the image convolution operations, we introduce a method similar to the img2col technique for conventional GPU 
acceleration. Specifically, the input image is divided into small patches corresponding to the kernel size and then reshaped 

Figure 1 Schematics of block-circulant matrix and BCON. (a). The general structure of block-circulant matrix. (b). Schematic 
of BCON. Here, each MRR functions as a tunable filter, with varying colors indicating operation at distinct wavelengths. 

Figure 2 Experimental setup BCON. (a). Micrograph of the wire-bonded photonic chip packaged with fiber array. (b). 
Schematic of BCON test flow 
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into a 2-D matrix, where each row vector from a single channel corresponds to a patch. Besides, convolution kernels are 
also reconstructed into a 2-D weight matrix, as shown in Figure 3.a. This approach transforms convolution operations into 
matrix multiplications, which is more efficient with high parallelism. For OSNN, we constrain the 2-D weight matrix after 
reconstruction to be a block-circulant matrix, and implement MVMs on BCON. To demonstrate system performance, we 
conducted on-chip convolution operations for chest X-ray images with a 3×3 Sobel Kernel designed for vertical edge 
detection (Figure 3.b). It is noteworthy that this system functions through an amplitude tuning mechanism, which poses 
challenges in achieving a full range of parameters. Hence, we address negative weights by executing two optical 
convolution processes and then subtracting the results in the electrical domain. The output waveforms and visualization 
results are shown in Figure 3.b, showcasing minimal noise and errors.  

To further evaluation, we performed an image recognition task using the Fashion-MNIST dataset. The network 
architecture comprises two convolutional layers, an average pooling layer, and a linear classifier with 10 output classes 
(Figure 3.c). The confusion matrix from the trained network indicates an accuracy of 89.1% with 4-bit control precision 
for input encoding and 8-bit precision for weight encoding. This preliminary result demonstrates the capacity of the block-
circulant ONN and BCON to effectively handle machine learning tasks. Future publications will explore implementations 
involving more sophisticated network architectures and datasets. 

Figure 3 Experimental results of on-chip convolution and image recognition task. (a). 2-D reconstruction of input matrices 
and kernels for convolution operations. (b). Demonstration of on-chip convolution using BCON. Here, for demonstration 
purposes, we chose a convolution kernel with tangible physical meaning, corresponding to the first column vector in the 2-D 
weight matrix. This selection implies redundancy in the other columns (the block-circulant transformation of the first column 
vector) for this specific task. (c). Architecture of the OSNN and performance in the image recognition task using the FMNIST 
dataset. 
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4. CONCLUSION 
This work reports a hardware-efficient ONN based on block-circulant structured architecture to implement tensor 
operations. The architecture features k times fewer active components than a conventional k×k crossbar array for GEMMs 
and fewer DACs leading to lower overall power consumption. Besides, an FPGA-based ONN testing platform and 
hardware-aware training framework are developed. The BCON experimentally demonstrated on-chip optical convolution 
operations and achieved a measured accuracy of  89.1% on the FMNIST dataset, which presents a compelling avenue for 
exploiting the advantages of optical computing in the development of next-generation AI accelerators. 
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