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ABSTRACT

Photonics is becoming a cornerstone technology for high-performance AI systems and scientific
computing, offering unparalleled speed, parallelism, and energy efficiency. Despite this promise,
the design and deployment of electronic–photonic AI systems remain highly challenging due to a
steep learning curve across multiple layers, spanning device physics, circuit design, system architec-
ture, and AI algorithms. The absence of a mature electronic-photonic design automation (EPDA)
toolchain leads to long, inefficient design cycles and limits cross-disciplinary innovation and co-
evolution. In this work, we present a cross-layer co-design and automation framework aimed at
democratizing photonic AI system development. We begin by introducing our architecture designs
for scalable photonic edge AI and Transformer inference, followed by SimPhony, an open-source
modeling tool for rapid EPIC AI system evaluation and design-space exploration. We then highlight
advances in AI-enabled photonic design automation, including physical AI-based Maxwell solvers,
a fabrication-aware inverse design framework, and a scalable inverse training algorithm for meta-
optical neural networks, enabling a scalable EPDA stack for next-generation electronic–photonic
AI systems.

Keywords: Photonic computing, photonic AI system co-design, electronic-photonic design au-
tomation, inverse photonic design, AI-accelerated Maxwell solvers

1. INTRODUCTION

Integrated photonics has emerged as a cornerstone technology for the next generation of high-
performance AI systems1–5 and scientific computing.6,7 By leveraging the fundamental properties
of light, such as massive parallelism via wavelength division multiplexing,8,9 picosecond-level propa-
gation delays,10 and ultra-low energy consumption, photonic accelerators offer a promising pathway
to transcend the physical limitations of traditional electronic hardware. However, despite the sig-
nificant potential of Electronic-Photonic Integrated Circuits (EPICs), their widespread adoption is
currently hindered by a substantial barrier to entry.11 The design and deployment of photonic AI
systems involve a steep learning curve that spans multiple layers: from fundamental device physics
and electromagnetic wave theory to circuit-level mixed-signal interfaces, system architectures, and
high-level AI algorithms. This cross-disciplinary complexity is further compounded by the absence
of a mature Electronic-Photonic Design Automation (EPDA) toolchain.12 Unlike the highly auto-
mated EDA industry for digital electronics, photonic design still relies heavily on slow numerical
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simulations, manual device layout tuning, and fragmented evaluation frameworks. Such limitations
lead to inefficient, non-scalable design cycles and prevent the effective co-evolution of hardware and
algorithms.

To address these challenges and democratize the development of photonic AI, we present an
open-source, AI-infused cross-layer co-design and design automation framework for electronic-
photonic systems. Central to this framework is SimPhony,13 a system-level modeling framework
that enables rapid exploration by bridging the gap between device parameters and system perfor-
mance metrics. Beyond system modeling, we leverage AI not only as the target workload but as
a powerful tool for design automation itself. We introduce a suite of physical AI-based Maxwell
solvers, including NeurOLight,14 PACE,15 and PIC2O-Sim,16 which replace time-consuming numerical
simulations with ultra-fast, differentiable neural operators. These solvers are seamlessly integrated
into the MAPS17 infrastructure, a modular platform that unifies data generation, surrogate training,
and fabrication-aware inverse design. Finally, we present the SP2RINT18 algorithm, which provides
a scalable pathway for training meta-optical neural networks under strict physical constraints.

The remainder of this paper is organized as follows. Section 2 reviews our recent architecture
designs for scalable photonic edge AI and Transformer inference, with a focus on hardware-algorithm
co-optimization. Section 3 details our progress in advanced AI-assisted photonic design automation,
highlighting the development of high-speed solvers and standardized inverse design frameworks.
Finally, Section 4 concludes with an outlook on our future electronic-photonic design automation
toolflow.

2. CROSS-LAYER CO-DESIGN FOR EFFICIENT PHOTONIC AI
SYSTEMS

As workloads scale toward Large Language Models (LLMs), hardware/algorithm co-design serves
as the critical technology to support large-scale, dynamic AI workloads with sufficient hardware
efficiency, scalability, and flexibility. In this section, we emphasize how cross-layer co-optimization
enables next-generation photonic AI systems for real-world cloud/edge workloads.

To support modern LLMs, specifically attention-based Transformer model architectures, pho-
tonic computing cores need fundamental innovative designs to enable dynamic tensor operations
with extensive optimization on signal conversion and data movement. Our prior architecture design,
Lightening-Transformer,19 was the first accelerator developed to support the high-throughput,
dynamic optical matrix-matrix multiplications to support efficient self-attention operations. It re-
places weight-static photonic matrix units with a novel Dynamically-operated Photonic Tensor Core
(DPTC). At its heart is the Dynamically-operated Dot-product (DDot) engine, a coherent
dot-product unit that enables picosecond-level operand switching and supports full-range (signed)
matrix inputs without the need for hardware duplication or multiple inference passes. Lightening-
Transformer fully unleashes the power of optics by integrating these computing cores with photonic
interconnects for inter-core data broadcast. By exploiting both Wavelength Division Multiplexing
(WDM) for spectral parallelism and optical broadcast for intra-core operand sharing, the cross-
layer-optimized architecture achieves over a 12× latency reduction compared to prior photonic
accelerators.

Complementing the high-performance computing platforms in the cloud, we extend this ar-
chitecture to a new version, TeMPO,20 to address the needs of resource-constrained edge AI,



where area and energy efficiency are highly restricted. In TeMPO, we introduce an efficient, time-
multiplexed dynamic photonic tensor core. At the device level, TeMPO utilizes our customized,
foundry-fabricated slow-light Mach-Zehnder Modulators (SL-MZMs) that leverage enhanced light-
matter interaction to achieve a footprint an order of magnitude smaller than standard PDK ele-
ments. To overcome the long-standing power bottleneck of Analog-to-Digital Converters (ADCs),
a circuit-level innovation is employed: hierarchical partial product accumulation. By aggregating
photocurrents and utilizing lightweight capacitive temporal integration in the analog domain, the
required ADC sampling frequency is largely reduced by a factor of T (the integration time step,
e.g., 60 cycles). This cross-layer co-design enables a compute density of 1.2 TOPS/mm2 and an
energy efficiency of 22.3 TOPS/W, providing a robust solution for real-time edge tasks such as voice
keyword spotting and semantic segmentation.

In addition to throughput and energy efficiency, scalable photonic AI accelerators must be re-
silient to hardware non-idealities. Our recent architecture SCATTER21 exemplifies an extreme
cross-layer co-design spanning device, circuit, layout, architecture, and algorithm, where a multi-
step co-optimization pipeline jointly targets power/area minimization and robustness guarantees
under realistic physical constraints. ➊ Starting from the bottom of the stack, SCATTER replaces
communication-oriented foundry building blocks with compute-tailored low-power slow-light mod-
ulators, unlocking substantial baseline reductions in footprint and energy. ➋ At the physical and
circuit levels, SCATTER explores circuit/weight matrix co-sparsity that enables crosstalk-aware lay-
out to safely densify the photonic tensor core without sacrificing robustness. ➌ At the architecture
level, we introduce an on-chip in-situ light redistribution (rerouting) and power-gating mechanism
that dynamically reallocates optical power to active rows/columns, enabling high-efficiency struc-
tured sparse matrix multiplication while improving effective SNR by avoiding over-driving inactive
channels. ➍ Finally, SCATTER addresses the dominant electronic overhead by upgrading con-
ventional electrical DACs to a hybrid electronic–optical segmented DAC, combining high resolution
with low power to preserve accuracy at reduced energy. Together, this cross-stack strategy turns
performance, efficiency, and robustness into co-optimized objectives, yielding 511× area com-
paction and 12.4× power-efficiency improvement while largely resolving thermal crosstalk,
demonstrating a practical path toward robust, sparse, and scalable photonic AI acceleration.

3. ADVANCED AI-ASSISTED PHOTONIC DESIGN AUTOMATION
FRAMEWORK

The integration of photonics into AI hardware promises to overcome the fundamental throughput
and energy-efficiency limits of electronic computing. However, the path from theoretical algorithms
to deployable electronic-photonic AI systems is currently obstructed by several critical design and
implementation bottlenecks.

First, the computational wall of physical simulation remains the most significant barrier
to rapid iteration. Traditional numerical methods, while accurate, are too slow to be used in
the large-scale optimization loops required for complex AI architectures. Second, as devices serve
as the fundamental building blocks that dictate overall system performance, photonic device
design has historically relied on manual heuristics, often leading to non-optimal footprints and
limited performance. Finally, the lack of a mature Electronic-Photonic Design Automation
(EPDA) toolchain prevents the holistic co-design of algorithms and hardware.



To bridge these gaps, this section highlights our recent advances in AI-assisted design automation
for PIC,22 spanning from system-level modeling to device-level simulation,13 and photonic-device
inverse design,14,17,23 to scalable training algorithms for next-generation meta-optical systems.18

3.1 Simulation for Electronic-Photonic AI Systems
EPICs offer strong promise for next-generation high-performance AI, but realizing that promise
demands coordinated advances spanning devices, mixed-signal circuits, architectures, and design
automation. The hybrid nature of these systems introduces tightly coupled behaviors across the
stack, making it difficult even for experts to reason about interactions and performance bottlenecks.
Compounding this challenge, the community still lacks a flexible, accurate, fast, and user-friendly
simulation framework for EPIC AI systems, limiting systematic exploration of new hardware ideas
and end-to-end evaluation on standard benchmarks.

To bridge this gap, we propose SimPhony,13 an open-source, cross-layer modeling and simu-
lation framework for rapid yet realistic EPIC AI evaluation. SimPhony alleviates the simulation
bottleneck by integrating device-level photonic models, circuit connectivity, and architecture-level
behavior into a unified, scalable abstraction. Instead of invoking expensive full-wave solvers during
early-stage exploration, SimPhony relies on compact, layout-aware photonic models that capture
key physical effects, such as insertion loss, phase errors, modulation nonlinearity, noise, and ther-
mal sensitivity, while remaining efficient enough for large architectural sweeps and algorithm-level
studies.

At the circuit and architecture layers, we model heterogeneous EPIC platforms that combine
photonic compute units with electronic control logic and data converters. Device- and layout-
derived metrics are propagated upward to quantify system-level costs, including optical link budgets,
ADC/DAC energy, device tuning overhead, and throughput-latency trade-offs. This enables design-
ers to assess realistic performance envelopes for photonic accelerators and optically interconnected
AI systems under practical implementation constraints.

Importantly, SimPhony can interface directly with machine learning frameworks, enabling pho-
tonic non-idealities to be injected into training and inference. This supports hardware-aware learn-
ing, where models adapt to photonic noise, limited precision, and process variability. By closing
the loop between physical modeling and algorithmic evaluation, SimPhony provides a foundational
infrastructure for system-algorithm co-exploration and guides both architectural decisions and pho-
tonic hardware optimization toward scalable EPIC AI systems.

3.2 Physical AI-Based Maxwell Solvers
The advancement of photonic AI systems hinges on design automation tools that can circumvent the
prohibitive computational overhead of traditional electromagnetic (EM) simulation. While high-
fidelity numerical solvers, such as finite-difference frequency-domain (FDFD) and finite-difference
time-domain (FDTD), provide gold-standard accuracy, they often incur significant latency, ranging
from minutes to hours per device. Such delays bottleneck iterative design space exploration and
hinder the progress of hardware-software co-optimization.

Recently, learning-based PDE surrogates have emerged as a promising alternative, aiming to
learn direct mappings from physical configurations to solution fields. Notable approaches include
physics-informed neural networks (PINNs)24 and operator-learning frameworks like DeepONet25
and Fourier Neural Operators (FNO).26 Despite their potential, applying these models to practical



(a) (b)

(c)
Figure 1: (a) Runtime comparison of FDFD simulation and NeurOLight framework. (b)
NeurOLight learns a family of parametric Maxwell PDEs for ultra-fast optical field prediction.
(c) MMI field prediction across different models. The first row shows the real part of the predicted
field, the second row shows the FDFD-simulated ground-truth field, and the third row shows the
prediction error.

photonic devices remains challenging due to three critical limitations: (i) poor parametric general-
ization across varying wavelengths, materials, and discretizations; (ii) fidelity loss when capturing
multiscale effects in high-contrast or resonant structures; and (iii) the violation of fundamental
physical constraints, such as space-time causality, which leads to non-physical dynamics and er-
ror accumulation. Researchers have recently explored physics-augmented Maxwell solvers designed
to systematically address these obstacles, enabling fast yet reliable simulation for photonic de-
vices.14,15,24,27

Among those efforts, we introduce NeurOLight,14 a neural operator for parametric photonic
simulation that eliminates the need for per-device retraining. By embedding wave priors (wave-
length and permittivity cues) into a unified representation (Fig. 1b), it generalizes robustly across
Maxwell PDEs and delivers a 100-200× speedup over FDFD. Figure 1a highlights its superior
scalability across various device sizes compared to numerical simulators. Furthermore, Fig. 1c
demonstrates that NeurOLight field predictions for multimode interference devices align closely
with ground-truth results, maintaining high fidelity alongside significant acceleration.

To bridge the accuracy gap in complex devices where high-contrast permittivity and scatter-
ing resonances challenge standard operators, PACE15 is proposed to further boost the prediction
fidelity via two-stage error compensation. This model utilizes a cross-axis factorized integral kernel
for parameter-efficient long-range modeling, coupled with a two-stage cascaded refinement paradigm
inspired by human learning. By progressively distilling features across stages to refine coarse predic-
tions, PACE reduces simulation error by 73% while achieving up to a 577× speedup over numerical
simulators.



(a) (b)
Figure 2: (a) Illustration of our MAPS17 infrastructure based on three synergistic sub-modules:
MAPS-Data, MAPS-Train, and MAPS-InvDes, targeting AI-assisted photonic simulation and inverse
design. (b) Top: The electrical field of the inverse-designed bend predicted by NN and verified by
FDFD; bottom: Optimization trajectory driven by NN-predicted gradients. Transmission efficiency
calculated based on NN-predicted fields and FDFD-simulated fields is shown for comparison.

More recently, to address the complexities of time-domain EM modeling, where autore-
gressive surrogates are often prone to instability, we propose PIC2O-Sim.16 This causality-aware
dynamic convolutional neural operator strictly enforces the Maxwellian light cone constraint. By
integrating permittivity-conditioned, position-adaptive dynamic convolutions to capture material-
dependent propagation, PIC2O-Sim enables high-fidelity spatiotemporal simulation with up to a
310× speedup over industry-standard software like Meep,28 providing a robust differentiable engine
for large-scale inverse design.

3.3 AI-Infused Inverse Design Framework
Achieving the stringent requirements for extreme performance, compact footprint, and energy effi-
ciency in next-generation electronic-photonic AI systems necessitates meticulous device-level design.
Conventional photonic design typically relies on extensive physics-based heuristics and iterative
trial-and-error, which imposes significant demands on designers. These manual tuning processes
are often inefficient and restricted to intuitive design spaces, frequently resulting in larger device
footprints. In contrast, inverse design29 formulates the design process as an optimization problem
guided by well-defined objectives and constraints, substantially reducing the reliance on detailed
physics expertise. By enabling the exploration of high-dimensional, non-intuitive design spaces, in-
verse design allows for the creation of significantly more compact devices than traditional methods
can typically achieve.

To accelerate the inverse design process and enable large-scale deployment, researchers have
explored the integration of AI-based surrogate models to replace conventional solvers, such as those
discussed in Section 3.2. However, this transition introduces critical methodological challenges: (1)
the absence of standardized datasets; (2) the lack of reproducible evaluation metrics for benchmark-
ing AI models; and (3) the frequently overstated effectiveness of existing surrogates. While these
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Figure 3: Our proposed spatially-decoupled transfer matrix probing method SP2RINT18 cuts the
metasurface into small patches for fast simulation that reduces complexity from cubic to linear.

models may produce visually plausible forward predictions, they often fail to provide the reliable
gradients necessary for optimization, thereby limiting their practical utility in replacing numerical
solvers.

To address these challenges, we propose MAPS,17 a modular, open-source infrastructure
for AI-augmented photonic simulation and inverse design (Fig. 2a). This platform unifies
data generation, model training, and fabrication-aware optimization into a cohesive framework.
Specifically, MAPS-Data provides a flexible data acquisition engine capable of generating multi-
fidelity, richly annotated datasets through optimization-aware sampling strategies. MAPS-Train
supports customizable training pipelines for both data-driven and physics-informed models, in-
corporating standardized evaluation metrics such as field prediction accuracy and adjoint gradient
alignment. Furthermore, MAPS-InvDes abstracts the complexity of adjoint-based optimization while
enabling seamless integration with pretrained neural solvers and differentiable fabrication models.23

As a practical demonstration, Fig. 2b (top) shows an inverse-designed photonic bend optimized
with NeurOLight, achieving a ∼100× speedup over conventional numerical solvers, while the final
design is rigorously validated using high-fidelity FDFD simulations. And the bottom one displays
the optimization trajectories for this device, highlighting the convergence characteristics of the
neural solver compared to a traditional numerical approach. Collectively, MAPS facilitates scalable
and variation-robust photonic inverse design, establishing a foundation for reproducible AI-for-
optics research and real-world deployment.

3.4 Scalable Inverse Training Algorithm of Meta-Optical Neural Networks
In this section, we demonstrate the extension of our inverse design methodology from component
to the systematic development for scalable Meta-Optical Neural Network (MONN) training.
MONNs are multi-layer Diffractive Optical Neural Networks (DONNs), harnessing engineered meta-
surfaces to perform high-capacity, energy-efficient analog computation at the speed of light. By
precisely modulating the phase and amplitude of incident light through arrays of subwavelength
meta-atoms, these systems enable complex mathematical operations within high parallelism and
near-zero energy cost.

However, training MONNs to achieve high accuracy while ensuring physical feasibility remains
a significant challenge. Conventional design strategies often rely on the Local Periodic Approxi-
mation (LPA),30 which oversimplifies metasurfaces as idealized, element-wise phase masks. This
approach neglects critical inter-element optical interactions, often resulting in designs that are phys-
ically unrealizable or suffer from severe performance degradation upon implementation. Conversely,
simulation-in-the-loop training methods embed full-wave electromagnetic simulations directly into



Figure 4: |Hz| field comparison fora 6-layer diffraction system consisting of 128-meta-atoms meta-
surfaces. SP2Rint captures the transfer matrix accurately and outperforms LPA, closely matching
the FDFD result.

the optimization process. While accurate, these approaches are prohibitively expensive due to their
cubic O(n3) complexity, which prevents them from scaling to large-capacity or multi-layer systems.

To bridge this gap, we integrate inverse design with DONN training in a scalable frame-
work SP2RINT (Spatially-Decoupled Physics-Inspired ProgRessive INverse OpTimization)18 that
formulates MONN design as a PDE-constrained learning problem. SP2RINT introduces several
primary innovations to overcome the scalability bottleneck in brute-force inverse design. First,
Spatially Decoupled Simulation exploits the natural locality of meta-atom interactions and
the field smoothness inherent in diffraction to partition the metasurface into independently solvable
patches. As illustrated in Fig. 3, this approach transforms the computational complexity from cubic
to near-linear, enabling the parallel simulation of large-scale metasurfaces. Second, Progressive
PDE-Constrained Learning avoids imposing rigid physical constraints at the onset of training
by employing a progressive soft projection strategy. Metasurface responses are initially relaxed
into freely-trainable transfer matrices and then gradually projected onto the Maxwell-constrained
subspace via inverse design. This prevents the optimization from becoming trapped in poor local
optima and ensures the final design is both high-performing and physically implementable.

Our SP2RINT can inversely optimize DONNs with physically implementable metasurfaces
to realize digital-comparable AI inference accuracy while being 1825× faster than traditional
simulation-in-the-loop approaches. To visualize how our method can inversely optimize metasur-
faces with more accurate modeling than prior approaches, Fig. 4 compares the estimated and
simulated optical fields within the diffractive feature extractor during inference. This pipeline can
be potentially further accelerated by replacing conventional solvers with our AI-based photonic
solvers introduced in Section 3.2 as an AI-accelerated MONN training framework, which is left for
our future exploration.



4. CONCLUSION AND OUTLOOK
The developments surveyed here point toward an emerging EPDA stack that leverages AI to ac-
celerate, stabilize, and systematize electronic-photonic AI system design. Our system simulation
framework SimPhony enables fast cross-layer evaluation by bridging device-level photonic mod-
els with circuit and architecture metrics, using compact layout-aware models. Then, our proposed
physical AI-based Maxwell solvers further reduce the cost of electromagnetic simulation by orders of
magnitude. Based on these simulators, we present an open-source infrastructure for AI-augmented
photonic simulation and inverse design that unifies data generation, model training, and fabrication-
aware optimization in a cohesive framework. The frameworks of SP2RINT extend this inverse design
idea to meta-optical neural networks, demonstrating that PDE-constrained training can be made
scalable by combining relaxed representations, inverse design, and spatial decomposition.

Looking forward, automating electronic-photonic design will be pivotal to unlocking the next
wave of advances in computing and communications. Realizing the full potential of EPIC AI plat-
forms calls for a holistic photonic-electronic co-design framework that jointly optimizes devices,
circuits, and algorithms. In particular, architectural exploration should couple system-level evalu-
ation with device-level parameter optimization and sensitivity analysis, so that physical variations
can be directly mapped to end-to-end AI metrics. Beyond optimizing individual components, a key
frontier is system-scale inverse design: embedding differentiable inverse-design engines into EPDA
can automatically synthesize workload-specific photonic primitives and feed compact, fabrication-
aware models back into the co-design loop. Equally important is rigorous circuit-level simulation
to capture dominant electronic overheads and their interactions with active photonics. Ultimately,
EPDA should enable “push-button” arch-to-layout automation, translating high-level specifications
into netlists and verified layouts via automated mapping, placement, and routing, layout-aware
parasitic extraction, and multi-physics verification, thereby reducing iteration time and lowering
the barrier to entry. With a more intelligent and accessible design ecosystem, integrated photonics
can be rapidly translated into practical solutions for demanding real-world applications, sustaining
innovation across the photonic computing stack.
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