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Abstract— As a promising neuromorphic framework, the opti-
cal neural network (ONN) demonstrates ultrahigh inference
speed with low energy consumption. However, the previous
ONN architectures have high area overhead which limits their
practicality. In this article, we propose an area-efficient ONN
architecture based on structured neural networks, leveraging
optical fast Fourier transform for efficient computation. A two-
phase software training flow with structured pruning is proposed
to further reduce the optical component utilization. Experimental
results demonstrate that the proposed architecture can achieve
2.2–3.7× area cost improvement compared with the previous sin-
gular value decomposition-based architecture with comparable
inference accuracy. A novel optical microdisk-based convolutional
neural network architecture with joint learnability is proposed as
an extension to move beyond Fourier transform and multilayer
perception, enabling hardware-aware ONN design space explo-
ration with lower area cost, higher power efficiency, and better
noise-robustness.

Index Terms—Hardware-efficient, nanophotonics, neural
network hardware, optical computing, performance optimization.

I. INTRODUCTION

DEEP neural networks (DNNs) have demonstrated supe-
rior performance in a variety of intelligent tasks, for

example convolutional neural networks (CNNs) on image
classification [1] and recurrent neural networks on language
translation [2]. Multilayer perceptrons (MLPs) are among the
most fundamental components in modern DNNs, which are
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typically used as regression layers, classifiers, embedding lay-
ers, attention layers, etc. However, it becomes challenging for
traditional electrical digital von Neumann schemes to support
escalating computation demands owing to speed and energy
inefficiency [3]–[7]. To resolve this issue, significant efforts
have been made on hardware design of neuromorphic comput-
ing frameworks to improve the computational speed of neural
networks, such as electronic architectures [8]–[10] and pho-
tonic architectures [11]–[15]. Among extensive neuromorphic
computing systems, optical neural networks (ONNs) distin-
guish themselves by ultrahigh bandwidth, ultralow latency,
and near-zero energy consumption. Even though ONNs are
currently not competitive in terms of area cost, they still
offer a promising alternative approach to microelectronic
implementations given the above advantages.

Recently, several works demonstrated that MLP inference
can be efficiently performed at the speed of light with optical
components, e.g., spike processing [11] and reservoir com-
puting [16]. They claimed a photodetection rate over 100
GHz in photonic networks, with near-zero energy consump-
tion if passive photonic components are used [17]. Based on
matrix singular value decomposition (SVD) and unitary matrix
parametrization [18], [19], Shen et al. [3] designed and fabri-
cated a fully ONN that achieves an MLP with Mach–Zehnder
interferometer (MZI) arrays. Once the weight matrices in the
MLP are trained and decomposed, thermo-optic phase shifters
(PSs) on the arms of MZIs can be set up accordingly. Since the
weight matrices are fixed after training, this fully ONN can be
completely passive, thus minimizes the total energy consump-
tion. However, this SVD-based architecture is limited by high
photonic component utilization and area cost. Considering a
single fully connected layer with an m× n weight matrix, the
SVD-based ONN architecture requires O(m2 + n2) MZIs for
implementation. Another work [20] proposed a slimmed ONN
architecture (T�U) based on the previous one [3], which sub-
stitutes one of the unitary blocks with a sparse tree network.
However, its area cost improvement is limited. Therefore, this
high hardware complexity of the SVD-based ONN architecture
has become the bottleneck of its hardware implementation.

In addition to hardware implementation, recent advances
in neural architecture design and network compression tech-
niques have shown significant reduction in computational
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cost. For example, structured neural networks (SNNs) [21]
were proposed to significantly reduce computational com-
plexity and thus, become amenable to hardware. Besides,
network pruning offers another powerful approach to slimming
down neural networks by cutting off insignificant neuron
connections. While nonstructured pruning [22] produces ran-
dom neuron sparsity, group sparsity regularization, [23] and
structured pruning [9] can lead to better network regu-
larity and hardware efficiency. However, readily available
pruning techniques are rather challenging to be applied to
the SVD-based architecture due to some issues, such as
accuracy degradation and hardware irregularity. The gap
between hardware-aware pruning and the SVD-based archi-
tecture gives another motivation for a pruning-friendly ONN
architecture.

In this article, we propose a new ONN architecture that
improves area efficiency over previous ONN architectures.
It leverages optical fast Fourier transform (OFFT) and its
inverse (OIFFT) to implement SNNs, achieving lower optical
component utilization. It also enables the application of struc-
tured pruning given its architectural regularity. The proposed
architecture partitions the weight matrices into block-circulant
matrices [24] and efficiently performs circulant matrix mul-
tiplication through OFFT/OIFFT. We also adopt a two-phase
software training flow with structured pruning to further reduce
photonic component utilization while maintaining compara-
ble inference accuracy to previous ONN architectures. We
extend this architecture to a hardware-efficient optical CNN
design with joint learnability, and demonstrate its superior
power efficiency and noise-robustness compared with Fourier
transform-based design. The main contributions of this work
are as follows.

1) We propose a novel, area-efficient ONN architecture
with OFFT/OIFFT, and exploit a two-phase software
training flow with structured pruning to learn hardware-
friendly sparse neural networks that directly eliminate
part of OFFT/OIFFT modules for further area efficiency
improvement.

2) We experimentally show that pruning is challenging
to be applied to previous ONN architectures due to
accuracy loss and retrainability issues.

3) We experimentally demonstrate that our proposed archi-
tecture can lead to an area saving of 2.2–3.7× compared
with the previous SVD-based ONN architecture, with
negligible inference accuracy loss.

4) We extend our ASP-DAC version of ONN architec-
ture [25] to a novel design for microdisk (MD)-based
frequency-domain optical CNNs with high parallelism.

5) We propose a trainable frequency-domain transform
structure and demonstrate it can be pruned with high
sparsity and outperforms traditional Fourier transform
with less component count, higher power efficiency, and
better noise-robustness.

The remainder of this article is organized as follows.
Section II introduces the background knowledge for our
proposed architecture. Section III presents details about
the proposed ONN architecture and software pruning flow.
Section IV analytically compares our hardware utilization

with the SVD-based architecture. Section V demonstrates an
extension to optical CNN with trainable transform structures.
Section VI reports the experimental results for our proposed
ONN architecture and its CNN extension, followed by the
conclusion in Section VII.

II. PRELIMINARIES

In this section, we introduce the background knowledge for
our proposed architecture. We discuss principles of cirulant
matrix representation and its fast computation algorithms in
Section II-A and illustrate structured pruning techniques with
Group Lasso regularization in Section II-B.

A. FFT-Based Circulant Matrix Computation

Unlike the SVD-based ONNs which focus on classical
MLPs, our proposed architecture is based on SNNs with
circulant matrix representation. SNNs are a class of neural
networks that are specially designed for computational com-
plexity reduction, whose weight matrices are regularized using
the composition of structured submatrices [21]. Among all
structured matrices, circulant matrices are often preferred in
recent SNN designs.

As an example, we show an n × n circulant matrix W as
follows: ⎡

⎢⎢⎢⎣

w0 wn−1 · · · w1
w1 w0 · · · w2
...

...
. . .

...

wn−1 wn−2 · · · w0

⎤
⎥⎥⎥⎦.

The first column vector w = [w0, w1, . . . , wn−1]T represents
all independent parameters in W, and other columns are just
its circulation.

According to [24], circulant matrix-vector multiplication
can be efficiently calculated through fast Fourier transform
(FFT). Specifically, given an n × n circulant matrix W and a
length-n vector x, y = Wx can be efficiently performed with
O(n log n) complexity as

y = F−1(F(w)� F(x)) (1)

where F(·) represents n-point real-to-complex FFT, F−1(·)
represents its inverse (IFFT), and � represents complex vector
element-wise multiplication (EM).

SNNs benefit from high computational efficiency while
maintaining comparable model expressivity to classical NNs.
Theoretical analysis [26] shows that SNNs can approximate
arbitrary continuous functions with arbitrary accuracy given
enough parameters, and are also capable of achieving the iden-
tical error bound to that of classical NNs. Therefore, based on
SNNs with circulant matrix representation, the proposed archi-
tecture features low computational complexity and comparable
model expressivity.

B. Structured Pruning With Group Lasso Penalty

The proposed ONN architecture enables the application of
structured pruning to further save optical components while
maintaining accuracy and structural regularity. Structured
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pruning trims the neuron connections in NNs to mitigate com-
putational complexity. Unlike �1 or �2 norm regularization,
which produces arbitrarily appearing zero elements, structured
pruning with Group Lasso regularization [9], [27] leads to zero
entries in groups. This coarse-grained sparsity is more friendly
to hardware implementation than nonstructured sparsity. The
formulation of Group Lasso regularization term is given as
follows:

LGL =
G∑

g=0

√
1/pg

∥∥βg
∥∥

2 (2)

where G is the total number of parameter groups, βg is the
parameter vector in the gth group, ‖ · ‖2 represents �2 norm,
pg represents the vector length of βg, which accounts for the
varying group sizes. Intuitively, the �2 norm penalty ‖βg‖2
encourages all elements in the gth group to converge to 0, and
the group-wise summation operation is equivalent to group-
level �1 norm regularization, which contributes to the coarse-
grained sparsity. Leveraging the structured pruning together
with Group Lasso regularization, our proposed architecture can
save even more photonic components.

III. PROPOSED ARCHITECTURE

In this section, we will discuss details about the proposed
architecture and pruning method. In the first part, we illustrate
five stages of our proposed architecture. In the second part, we
focus on the two-phase software training flow with structured
pruning.

A. Proposed Architecture

Based on SNNs, our proposed architecture implements a
structured version of MLPs with circulant matrix represen-
tation. A single layer in the proposed architecture performs
linear transformation via block-circulant matrix multiplication
y = Wx. Consider an n-input, m-output layer, the weight
matrix W ∈ R

m×n is partitioned into p× q submatrices, each
being a k × k circulant matrix. To perform tiled matrix mul-
tiplication, the input x is also partitioned into q segments
x = (x0, x1, . . . , xq−1). Thus, y = Wx can be performed in a
tiled way

y =

⎛
⎜⎜⎜⎝

y0
y1
...

yp−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

∑q−1
j=0 W0jxj∑q−1
j=0 W1jxj

...∑q−1
j=0 Wp−1jxj

⎞
⎟⎟⎟⎟⎠

. (3)

The ith segment yi = ∑q−1
j=0 Wijxj is the accumulation of q

independent circulant matrix multiplications. Each Wijxj can
be efficiently calculated using the fast computation algorithm
mentioned in (1). Based on the aforementioned equations, we
realize block-circulant matrix multiplication y = Wx in five
stages: 1) splitter tree (ST) stage to split input optical sig-
nals for reuse; 2) OFFT stage to calculate F(x); 3) EM stage
to calculate F(wij) � F(xj) as described in (1); 4) OIFFT
stage to calculate F−1(·); and 5) combiner tree (CT) stage
to accumulate partial multiplications to form the final results.

Fig. 1. Schematic diagram of a single layer of the proposed architecture.
All adjacent PSs on the same waveguide are already merged into one PS.

(a)

(b)

(c)

Fig. 2. Schematics of (a) 4-point OFFT, (b) 4-point OIFFT, and (c) 2 × 2
coupler. Note that PSs shown above are not merged for structural completeness
consideration.

F(wij) can be precomputed and encoded into optical com-
ponents, thus there is no extra stage to physically perform it.
The schematic of our proposed architecture is shown in Fig. 1.
Details of the above five stages will be discussed in the rest
of this section.

1) OFFT/OIFFT Stages: To better model the optical com-
ponents used to implement the OFFT/OIFFT stages, we
introduce a unitary FFT as

Xk = 1√
N

N−1∑
n=0

xne−i 2πkn
N , k = 0, 1, . . . , N − 1. (4)

We denote this special operation as F̂(·) and its inverse as
F̂−1(·), to distinguish from the original FFT/IFFT operations.
Equivalently, we rewrite the circulant matrix multiplication
with the above new operations

y = F̂−1(F(w)� F̂(x)
)
. (5)

This unitary FFT operation can be realized with optical
components. We first give a simple example for the opti-
cal implementation of a 2-point unitary FFT. As shown in
(7), the transformation matrix of a 2-point unitary FFT can
be decomposed into three transform matrices. They can be
directly mapped to a 3-dB directional coupler (DC) with two
−π/2 PSs on its lower input/output ports. The transfer matrix
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Fig. 3. Complex number multiplication realized by cascaded attenua-
tor/amplifier and PS.

of a 50/50 optical DC is given by

1√
2

(
1 j
j 1

)
. (6)

The transfer function of a PS is out = in · ejφ . For brevity, we
refer to this cascaded structure as a 2 × 2 coupler, which is
shown in Fig. 2(c)(

out1
out2

)
= 1√

2

(
in1 + in2
in1 − in2

)

=
(

1 0
0 −j

)

︸ ︷︷ ︸
output phase shifter

1√
2

(
1 j
j 1

)

︸ ︷︷ ︸
directional coupler

(
1 0
0 −j

)

︸ ︷︷ ︸
input phase shifter

(
in1
in2

)
.

(7)

Based on 2×2 couplers and PSs, larger-sized OFFT/OIFFT
can be constructed with a butterfly structure. The schematics of a
simple 4-point OFFT and OIFFT are shown in Fig. 2(a) and (b).
Extra 0-degree PSs are inserted for phase tuning purpose.

This butterfly structured OFFT may have scalability issues
because the number of waveguide crossings (CRs) will
increase rapidly when the number of point gets larger.
However, this unsatisfying scalability will not limit our
proposed architecture for two reasons. First, only small val-
ues of k, e.g., 2, 4, 8, will be adopted to balance hardware
efficiency and model expressivity. Second, input and output
sequences can be reordered to avoid unnecessary waveguide
crossings, as shown in Fig. 2.

2) EM Stage: In the EM stage, complex vector EMs will be
performed in the Fourier domain as αeφ · Iineφin = α Iineφin+φ ,
where Iin and φin are magnitude and phase of input Fourier
light signals, respectively. Leveraging the polarization of light,
we use optical attenuators (ATs) or amplification materi-
als/optical on-chip amplifiers with a scaling factor α to realize
modulus multiplication α · Iin and PSs with φ phase shift for
argument addition ej(φ+φin), which is shown in Fig. 3.

3) ST/CT Stage: We introduce tree-structured split-
ter/combiner networks to realize input signal splitting and
output signal accumulation, respectively. To reuse input seg-
ments xj in multiple blocks, optical splitters (SPs) are used
to split optical signals. Similarly, to accumulate partial mul-
tiplication results, i.e., yi =

∑q−1
j=0 Wijxj, we adopt optical

combiners (CBs) for signal addition. Given that SPs can be
realized by using combiners in an inversed direction, we will
focus on the CT structure for brevity.

The transfer function of an N-to-1 CB is:

out = 1√
N

N−1∑
l=0

inl. (8)

Fig. 4. Comparison between direct combining (left) and CT (right) with 4
length-2 vectors accumulated.

Accumulating q length-k vectors by simply using k q-to-1
combiners introduces a huge number of waveguide crossings
which may cause intractable implementation difficulty. Also,
combiners with more than two ports are still challenging for
manufacturing. In order to alleviate this problem, we adopt a
tree-structured combiner network, shown in Fig. 4. This CT
consists of k(q − 1) combiners and reduces the number of
waveguide crossings to k(k−1)(q−1)/2. Given that combiners
will cause optical intensity loss by a factor of 1/

√
N as shown

in (8), we assume there will be optical amplifiers added to the
end to compensate this loss.

In terms of cascading multiple layers, our proposed FFT-
based MLP is fully optical, such that the output optical
signals can be directly fed into the next layer without optical-
electrical-optical (O-E-O) conversion. At the end of the last
layer, photo-detection is used for signal readout, and the
phase information of the outputs are removed, which can be
fully modeled during our training process without causing any
accuracy loss.

B. Two-Phase Training Flow With Structured Pruning

Structured pruning can be applied to our proposed archi-
tecture during training given its architectural regularity. We
propose a two-phase software training flow with structured
pruning to train a more compact ONN. We first pre-train the
model with the Group Lasso regularization term to explore a
good initialization. Then we progressively prune the weight
blocks by forcing some groups to 0 based on a increasing
threshold T such that the corresponding hardware modules can
be completely eliminated. Meanwhile we finetune the model
to recover accuracy.

IV. THEORETICAL ANALYSIS ON PROPOSED

ARCHITECTURE

In this section, we analyze the hardware utilization and
compare with previous architectures.

We derive a theoretical estimation of hardware utilization
of the proposed architecture, the SVD-based architecture [3],
and the slimmed T�U-based architecture [20]. By comparing
the hardware component utilization, we show that theoreti-
cally our proposed architecture costs fewer optical components
than the SVD-based architecture and T�U-based architecture.
The comparison results are summarize the in Table I for clear
demonstration.

Authorized licensed use limited to: Arizona State University. Downloaded on December 28,2024 at 10:15:37 UTC from IEEE Xplore.  Restrictions apply. 



1800 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 9, SEPTEMBER 2021

Algorithm 1 Two-Phase Training Flow With Structured
Pruning

Input: Initial parameter w0 ∈ R
p×q×k, pruning threshold T , initial

training timestep tinit, and learning rate α;
Output: Converged parameter wt and a pruning mask M ∈ Z

p×q;
1: M← 1 � Initialize pruning mask to all 1
2: for t← 1, ..., tinit do � Phase 1: Initial training
3: Lt(wt−1)← Lt

base(w
t−1)+ λ · Lt

GL(wt−1)

4: wt ← wt−1 − α · ∇wLt(wt−1)
5: end for
6: while wt not converged do � Phase 2: Structured pruning
7: for all wt−1

i,j ∈ wt−1 do

8: if ||wt−1
ij ||2 < T then

9: M[i, j]← 0 � Update pruning mask
10: end if
11: end for
12: ApplyDropMask(M, wt−1)
13: Lt(wt−1)← Lt

base(w
t−1)+ λ · Lt

GL(wt−1)

14: wt ← wt−1 − α · ∇wLt(wt−1)
15: UpdateThreshold(T) � Smoothly increase threshold
16: end while

TABLE I
SUMMARY OF HARDWARE COMPONENT COST ON AN m× n LAYER IN

SVD-BASED ONN AND OUR PROPOSED ARCHITECTURE (SIZE-k
CIRCULANT BLOCKS). MOST AREA-CONSUMING COMPONENTS ARE

CONSIDERED. PS AND DC REPRESENT PS AND DC

For simplicity, we convert all area-costly components, i.e.,
2× 2 couplers, MZIs, and attenuators, to 3-dB DCs and PSs.
Specifically, one 2 × 2 coupler can be taken as one DC and
two PSs, and one MZI can be taken as two DCs and one PS.
Since an attenuator can be achieved by a single-input DC with
appropriate transfer factor, we count one attenuator as one DC.

Given an n-input, m-output layer, the SVD-based implemen-
tation requires m(m−1)/2+n(n−1)/2 MZIs, and max(m, n)

attenuators to realize the weight matrix. Therefore, with the
aforementioned assumption, the total number of components
it costs is given by

#DCSVD = m(m− 1)+ n(n− 1)+max(m, n)

#PSSVD = m(m− 1)/2+ n(n− 1)/2. (9)

For the slimmed T�U-based ONN architecture [20], one
unitary matrix is replaced by a compact sparse tree network
consisting of n MZIs. Therefore, the component utilization of
T�U-based ONN is given by

#DCT�U = m(m− 1)+ 2n+max(m, n)

#PST�U = m(m− 1)/2+ n. (10)

For our architecture, each k × k circulant matrix costs k
attenuators and corresponding components required by k-point
OFFT/OIFFT. The following formulation gives the number of
components for a k-point OFFT/OIFFT:

#DCOFFT(k) = 2× #DCOFFT(k/2)+ k/2 = k

2
log2 k

#PSOFFT(k) = k
(
log2 k + 1

)
. (11)

A phase shift is physically meaningful only when it is within
(−2π, 0] as phases can wrap around. Hence, multiple succes-
sive PSs on the same segment of a waveguide can be merged
as one PS, which can be seen when comparing Figs. 1 and 2.
Then, the total number of components used in our design
to implement an m × n weight matrix with size-k circulant
submatrices is given by

#DCOurs(k) = m

k
× n

k
× (2× #DCOFFT(k)+ k)

= mn

k

(
log2 k + 1

)

#PSOurs(k) = m

k
× n

k
× (2× #PSOFFT(k)− k)

= mn

k

(
2 log2 k + 1

)
. (12)

In practical cases, k will be set to small values, such as
2, 4, and 8. Given arbitrary values of m and n, the proposed
architecture costs theoretically fewer optical components than
the SVD-based architecture.

We also give a qualitative comparison with incoherent
microring resonator-based ONNs (MRR-ONNs). There are
two MRR-ONN variants. The first one is based on all-pass mir-
croring (MR) resonators [29]. The second one proposed later
is based on the differential add-drop MR resonators [30]. We
assume an M×N matrix multiplication in the following tasks.
Since the physical dimensions of MRs are smaller than cou-
plers and PSs in general, thus a lower area cost can be expected
for MRR-ONNs compared with ours. However, in terms of
model expressivity, all-pass MRR-ONN is much less than the
other two, since it only supports positive weights. Add-drop
MRR-ONN and our architecture can support a full-weight
range without positive limitation. In terms of robustness,
MRR-ONNs are less robust since the MR resonators are
more sensitive to device variations and environmental changes
than PSs. Especially for add-drop MRR-ONN, its differential
structure amplifies the noise on the MR transmission factor
by 2 times on its represented weight. Thus, less robustness
can be expected for MRR-ONNs. Furthermore, in terms of
power consumption, our architecture can benefit from struc-
tured sparsity to obtain a much lower power, which will be
shown in Section VII. In contrast, for MRR-ONNs, even
though a group of weights get pruned to zero values, the
corresponding MR resonators are not idle [29], [30], which
means its power consumption can barely benefit from prun-
ing techniques. Therefore, from the above qualitative analysis,
though our architecture demonstrates a relatively larger foot-
print than MRR-ONNs, we outperform them in terms of model
expressivity, robustness, and power.

V. EXTENSION TO OPTICAL CNN WITH LEARNABLE

TRANSFORMATIONS

To demonstrate the applicability of the proposed architec-
ture, we extend this architecture to a compact frequency-
domain MD-based optical CNN with joint learnability, where
the convolutional kernels and frequency-domain transforms are
jointly optimized during hardware-aware training.
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A. Microdisk-Based Frequency-Domain CNN Architecture

Given the 2-D nature of photonic integrated chips (PICs),
currently we only demonstrate optical designs for MLPs.
Previous solutions to accelerate CNNs are based on kernel slid-
ing, convolution unrolling, and time multiplexing [31], [32].
At each time step, the input feature chunks and corresponding
convolutional kernels are flattened as a 1-D vector and fed into
the ONNs to perform vector dot-product. Another solution to
solve this is to use im2col algorithm [29], [33], that trans-
forms convolution to general matrix multiplication (GEMM).
Convolutional kernels and input features are reshaped as
matrix-matrix multiplication, which can be directly mapped on
ONNs. Such implementation is inherently inefficient as over-
lapped convolutional patterns will create a huge amount of
data redundancy in the unrolled feature maps. In this work,
we proposed to achieve CNNs with a new ONN architec-
ture equipped with learnable transformation structures. Fig. 5
demonstrates our proposed optical MD-based CNN architec-
ture featured by kernel sharing, learnable transformation, and
augmented frequency-domain kernel techniques. Multichannel
input feature maps are encoded onto multiple wavelengths
and input into the learnable frequency-domain transforms,
then split into multiple branches through the fanout network
for parallel multikernel processing. Frequency-domain convo-
lution is performed in the MD-based kernel banks and the
final results are transformed back to the real domain via the
reversed transforms. Note that we do not include a detailed
discussion on the pooling operations since they are not the
computationally intensive parts in NNs. For example, optical
comparators can be used to achieve max-pooling. Average-
pooling can be implemented by a fixed-weight convolution
engine based on combiner-tree networks. Multiple layers can
be cascaded through O-E-O conversion. The phase information
loss during photo-detection can be fully modeled during train-
ing without harming the model expressivity, which is actually
a competitive substitute for rectified linear unit (ReLU) activa-
tion in the complex NN domain [34]. All of our experiments
in later sections model this phase removal during training,
which shows that this nonideality induced by photo-detection
does not cause any accuracy loss. We will introduce details of
the principles of the designed optical CNN in the following
section.

B. Kernel Weight Sharing

Modern CNN architectures, e.g., inception architecture [35],
adopts weight sharing to reduce the number of parameters in
the convolutional layers. For example, a 5×5 2-D convolution
involves 25 parameters. It can be replaced by two cascaded
lightweight 1× 5 and 5× 1 convolutions, which only contain
ten unique variables. Such a strategy trains a low-rank convo-
lutional kernel and can benefit its photonic implements as it
can be directly applicable to 2-D PICs, which is visualized in
Fig. 6.

C. Learnable Frequency-Domain Convolution

Spatial domain convolution requires to slide the receptive
field of convolutional kernels across the input features. This

could induce hardware implementation difficulty and ineffi-
ciency as time multiplexing increases the latency and control
complexity of photonic convolution. we solve this issue by a
parametrized frequency-domain convolution method. As men-
tioned before, we decompose the 2-D convolution as row-wise
and column-wise 1-D convolutions through weight sharing.
For brevity, we focus on the column-wise frequency-domain
convolution in the following discussion. The same principle
also applies to the row-wise convolution. The column-wise
convolution can be formulated as:

w ∗ x = T −1(T (w;φ)� T (x;φ);φ) (13)

where T (·;φ) is the learnable frequency-domain projec-
tion, and φ represents the trainable parameters in it. This
parametrized transformation enlarges the parameter space to
compensate for the model expressiveness degradation induced
by kernel weight sharing. Considering the learnable transform
as a high-dimensional unitary rotation, it is not necessary to
adopt an inverse transform pair to limit the exploration space.
To enable the maximum learnability of our trainable trans-
form structure, we relax the inverse transform to a reversed
transform

w ∗ x = Tr
(
T (w;φ)� T (x;φ);φr

)
(14)

where Tr has a reversed butterfly structure but is not con-
strained to be the inverse of T .

We now discuss how our proposed trainable transform
structures can move beyond Fourier transform, thus enable
hardware-aware learnability. Fourier transform is a complex
domain transformation that is mathematically designed for
frequency component extraction. However, the Fourier trans-
form is not necessary to be the best-performed transformation
that can be used in CNNs. Other manually designed unitary
transforms are also experimentally demonstrated to have a sim-
ilar ability for signal integration and extraction [36]. Hence, we
upgrade the fixed transformation structure to an adaptive struc-
ture where all PSs are trainable. As mentioned in Section IV,
PSs in the same segment of waveguide can be merged into one
PS. Therefore, to avoid redundant trainable PSs, we redesign
the learnable basic block, as shown in Fig. 7. For the original
transformation, two PSs φ1 and φ2 are placed on the input
port of the DC. The transfer function of a learned basic block
can be formulated as

T (2) = 1√
2

(
1 j
j 1

)(
ejφ1 0
0 ejφ2

)

= 1√
2

(
cos φ1 + j sin φ1 − sin φ1 + j cos φ1
− sin φ2 + j cos φ2 cos φ2 + j sin φ2

)
. (15)

In the reversed transformation structure, the basic block is the
same as used in the original transforms since the inverse basic
block requires a conjugate transposed transfer function which
is not implementable with this basic block. Based on this basic
block, we recursively build a trainable N-length transform with
a butterfly structure, which can be described as log2 N stages
of projection, log2 N−1 stages of permutation, and a final extra
group of PSs. The original transformation, shown in Fig. 7(a),
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Fig. 5. Architecture of an MD-based optical convolutional layer with trainable frequency-domain transforms. Columns of input features are fed into the
architecture in different time steps. Multiple kernels are implemented with multiple photonic chiplets to achieve higher parallelism.

can be formulated as

T (N) = D Blog2 N−1(N)

log2 N−2∏
i=0

Pi(N)Bi(N) (16)

where Bi(N) the ith stage of butterfly projection, Pi(N) is the
ith stage signal permutation, and the diagonal matrix D rep-
resents the final extra column of PSs. The butterfly projection
operator B(N) is a diagonal matrix with a series of T (2) as
its diagonal submatrices

B(N) =

⎛
⎜⎜⎝
T0(2) 0 · · · 0

0 T1(2) · · · 0
· · · · · · · · · · · ·
0 0 · · · TN/2−1(2)

⎞
⎟⎟⎠. (17)

The index permutation operator Pi(N) can be expressed as
a size-N identity matrix with reordered rows. As shown in
P0 and P1 in Fig. 7, the green entries represent 1, and other
blank entries represent 0. Note that the permutation operators
in the reversed structure is simply the reversed counterparts in
the original structure, i.e., Pi,ori(N) = PT

i,rev(N). The reversed
learnable transformation, shown in Fig. 7(b), is designed to
have reversed butterfly structure which can be derived as
follows:

Tr(N) = D

⎛
⎝

log2 N−2∏
i=0

Br,i(N)Pr,i(N)

⎞
⎠Br,log2 N−1(N). (18)

Note that the reversed transform is not guaranteed to be
inverse to the original transform, which requires particular
phase configurations discussed later.

Compared with its MZI-based counterparts, this trainable
butterfly transformation structure has a constrained projection
capability as only a limited set of unitary matrices can be
implemented by it [37] and [38]. As shown in unitary group
parametrization, a full N-dimensional unitary space U(N) has
N(N−1)/2 independent parameters, while the butterfly struc-
ture substitutes part of parametrized unitary matrices with
fixed permutation operators. Hence, based on full 2-D unitary
matrices U(2), the butterfly structure has 2N log2 N indepen-
dent parameters. Our proposed learnable block T (2) is a

Fig. 6. 2-D convolutional kernel decomposition using weight sharing and
frequency-domain transformation.

reduced version of U(2), as it only covers half of the full
2-D planar rotation space. The pruned transform space T ∗(2)

can be expressed as the conjugate transpose of T (2), which
is not implementable without waveguide crossings

T ∗(2) = 1√
2

(
0 −j
−j 0

)(
1 j
j 1

)(
ejφ1 0
0 ejφ2

)
. (19)

Equivalently, our learnable transformation structure has
N log2 N free parameters.

D. Microdisk-Based Augmented Kernels

To enable highly parallel CNN architecture with reinforced
model expressiveness, we propose MD-based augmented con-
volutional kernels with multilevel parallelism across input
features, input channels, and output channels.

In our design, each 2-D convolutional layer consists of two
cascaded 1-D frequency-domain convolutions along columns
and rows. We will focus on the column-wise convolution,
and the same architecture applies to its row-wise counter-
part with an extra matrix transposition operation. We denote
the input feature map as I ∈ R

Cin×H×W , which Cin, H, W
represent the number of input channel, spatial height, and
spatial width, respectively. At time step t, the correspond-
ing column I:,t,: ∈ R

Cin×H×1 will be input into the optical
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Fig. 7. (a) Original learnable frequency-domain transformation structure. (b) Reversed learnable transformation structure.

CNN. Different input channels are encoded by different wave-
lengths {λ0, λ1, . . . , λCin−1}. Through the wide-band learnable
transformation structure, we obtain the frequency-domain fea-
tures T (I:,t,:;φ). This stage enables parallel transformation
across the input channels. Then the optical signals carry-
ing those features will be split into Cout planes for data
reuse. Such a multidimensional ONN design can be sup-
ported by state-of-the-art integration technology with multiple
photonic chiplets [39]. In the MD-based convolution stage,
Cout × Cin × H all-pass MDs are used to implement the
frequency-domain kernels W ∈ R

Cout×Cin×H . Given that the
working principle of MD is primarily optical signal magni-
tude modulation, our augmented kernels are trainable only in
the magnitude space without phase modulation. Each convo-
lutional core is designed to perform the convolution of one
output channel. This MD-based convolution is different from
the previous EM stage consisting of attenuators and PSs. First,
all pass MDs can only perform configurable magnitude mod-
ulation of the input signals with fixed phase responses, which
means the augmented kernels will not expand over the entire
complex space. Here, we give the transfer function of an MD

Iout = W · Iin

cos θ = a2 + r2 −W
(
1+ r2a2

)
2(1−W)ar

φout = π + θ + arctan
r sin θ − 2r2a sin θ cos θ + ra2 sin θ

(a− r sin θ)(1− ra cos θ)

(20)

where Iin is the magnitude of the input light, Iout, φout are
magnitude and phase of the output optical signal, θ, a, r are
the phase, self-coupling coefficient, and coupling loss factor
of an MD, respectively. W is the transmitivity of the MD
which corresponds to the trained augmented kernel weight.
Typically, parameter a and r are very close to 1. Our proposed
architecture enables another level of parallelism across out-
put channels. Given that different convolutional kernels share
the same input features, multiple MD convolution cores, and

reversed transform structures will share one original transform
structure for hardware reuse and highly parallel convolution.

A higher modeling capacity is enabled by our augmented
kernel technique. Instead of training spatial kernels w, we
explicitly train the latent weights W in the frequency domain
without performing T (w;φ) during training. The augmented
latent weights W will not meet the conjugate symmetry con-
straint as its spatial-domain counterparts are not real-valued.
Hence, this enables a potentially infinite solution space in the
spatial kernel space with various kernel sizes and shapes.

We briefly discuss the scalability of this when mode-
division (WDM)-based highly parallel architecture. WDM
plays an important role in the high parallelism of our
proposed frequency-domain optical CNN. Currently, the
widely acknowledged maximum number of wavelength in the
single-mode dense-WDM (DWDM) is over 200 [40]–[42].
WDM multiplexing is further considered, higher parallelism
can be supported given the current technology. This means
in our architecture has enough parallelism to support most
modern CNN architectures.

E. Discussion: Exploring Inverse Transform Pairs in
Constrained Unitary Space

In manually designed frequency-domain convolution algo-
rithms, domain transformation will be designed to be inverse,
e.g., FFT and IFFT. This implies an inverse constraint between
two mutually reversed transform structures T and Tr. To be
able to realize trainable inverse transform pairs, we add unitary
constraints to our learnable transform structures

Tr
(·,φr

) = T −1(·;φ). (21)

Inverse constraints typically can be addressed via adding a
regularization term in training

Linv = ‖UrU − I‖2. (22)

However, this requires explicit transfer matrices of T and Tr

to compute this regularization term [43], which is memory-
intensive and computational expensive as indicated by (17)
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Fig. 8. Training curve of inverse loss Linv and mean square error between
trained phase configurations and theoretical 4-point OFFT settings.

and (18). We propose an efficient regularization method to
exert inverse constraint

Linv = ‖Tr(T (e))− e‖2, e ∈ C
N (23)

where e is the orthonormal bases of N-dimensional complex
space. Notice that if Tr(T (e)) = e, then for any x = αTe the
following statement holds:

Tr(T (x)) = Tr

(
T
(
αTe

))
= αTTr(T (e)) = x. (24)

Thus, transforms T and Tr are inverse transforms once the
regularization loss reaches 0. This surrogate method reduce
the computation complexity from O(N2 log2 N) in (16) to
O(N log2 N), where diagonal matrix multiplication with B(N)

is simplified by 2× 2 submatrix multiplication with T (2).
Using our proposed inverse pair regularization method, we

show that our trainable transform T can efficiently learn
Fourier transform by setting Tr as OIFFT. Fig. 8 demonstrates
that the trainable transform will quickly converge to the theo-
retical OFFT as the mean square error between trained phase
settings and target PS settings reduces to 0 when the loss
converges.

F. Discussion: Hardware-Aware Pruning for Trainable
Transforms

In this section, we demonstrate that our proposed trainable
transform has excellent compatibility with hardware-aware
pruning techniques. Compared to the fixed manual design
of frequency-domain transforms, e.g., OFFT, we can further
boost the hardware efficiency by eliminating a subset of phase
shifter columns inside the trainable transforms. With this fine-
grained structured pruning, we can improve the area, power,
and noise-robustness since phase shifters contribute to nearly
50% of the total area and majority of the total power and
noise. We adopt a phase-wrapping Group Lasso regulariza-
tion similar to (2) together with incremental pruning technique
to slim the trainable transforms targeted at lower area cost
and lower power consumption. The proposed phase-wrapping
Group Lasso (PhaseGL) is formulated as

LPhaseGL =
G∑

g=0

√
1/pg

∥∥∥φg − φ∗g
∥∥∥

2

φ∗g,i =
{

0, φg,i ∈ [0, π), 0 ≤ i < pg

2π, φg,i ∈ [π, 2π), 0 ≤ i < pg
(25)

TABLE II
HARDWARE COST SUMMARY ON THE PROPOSED MD-BASED OPTICAL

CNN ARCHITECTURE. THE INPUT FEATURE MAP IS OF SIZE

H ×W × Cin , THE NUMBER OF OUTPUT CHANNELS IS Cout , AND THE

SPARSITY OF THE LEARNABLE TRANSFORMS IS sT ∈ [0, 1]. FOR

SIMPLICITY, WE ASSUME H = W , WHICH IS A WIDELY USED

CONFIGURATION FOR MOST CNNS. GIVEN THE ULTRACOMPACT

FOOTPRINT OF AN MD, E.G., 5× 5 μm2 [47], WE COUNT 100 MDS AS

ONE DC IN THE AREA ESTIMATION. THE ROW-WISE AND

COLUMN-WISE CONVOLUTIONS ARE BOTH COUNTED IN THIS TABLE

where φg is a column of PSs and this regularization term
encourages phases toward their corresponding prunable tar-
gets φ∗g . G is the total columns of PSs, which is (log2 N + 1)

for a length-N transform. Once the group lasso of a column
falls below a threshold TT , the entire column of PSs are
pruned. The ratio of pruned columns to all PS columns is
called transform sparsity (T sparsity), defined as

sT =
∣∣∣
{
φg
∣∣√1/pg

∥∥∥φg − φ∗g
∥∥∥ < TT

}∣∣∣
G

.

Our proposed regularization and pruning strategy improves
area cost as an entire column of PSs are pruned to save chip
area in the actual layout. Furthermore, power consumption
and noise robustness can also be improved as a majority of
power consumption and noises are from trainable transform
structures [20], [43], [44].

G. Discussion: Hardware Cost of the Proposed MD-Based
Optical CNN

We give a summary on the hardware component usage of
the proposed MD-based optical CNN architecture in Table II.
Our architecture shares the original transform among multiple
kernels to save area. Our proposed pruning technique can regu-
larly sparsify the transform structures for further area reduction.
The MD-based convolution stage is very compact since the
footprint of an MD is two-order-of-magnitude smaller than a
DC. In contrast, the SVD-based ONN costs H(C2

out+C2
in×K4)

DCs and H(C2
out/2 + C2

in × K4/2) PSs to achieve the same
latency with our architecture, i.e., H forwards to finish a convo-
lutional layer, where K is the spatial kernel size. For example,
if we set H = 64, Cin = Cout = 32, K = 3, sT = 0.5, our
architecture uses > 370× fewer DCs and > 180× fewer PSs
than the single-wavelength SVD-based ONN. If SVD-based
ONNs also use WDM techniques for higher parallelism with
the same number of wavelength as ours, i.e., 32, we still outper-
form theirs by 11.6× fewer DCs and 5.6× fewer PSs. Hence,
our frequency-domain CNN architecture outperforms previous
MZI-ONNs with higher computational efficiency and better
scalability by a large margin.
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TABLE III
OPTICAL COMPONENT SIZES USED IN THE AREA ESTIMATION

VI. EXPERIMENTAL RESULTS

We conduct numerical simulations for functionality vali-
dation and evaluate our proposed architecture on the hand-
written digit recognition dataset (MNIST) [49] with various
network configurations. Quantitative evaluation shows that our
proposed architecture outperforms the SVD-based and T�U-
based ONN architectures in terms of area cost without any
accuracy degradation. We further evaluate our proposed MD-
based optical CNN architecture and demonstrates its superior
power reduction and robustness improvement on MNIST and
FashionMNIST [50] dataset.

A. Simulation Validation

To validate the functionality of our proposed architec-
ture, we conduct optical simulations on a 4 × 4 circu-
lant matrix-vector multiplication module using Lumerical
INTERCONNECT tools. First, we encode a 4 × 4 iden-
tity weight matrix into our architecture and input 4 parallel
optical signals to validate its functionality. For brevity, we
plot several different representative cases in Fig. 9(a). It
shows that our designed architecture can correctly realize
identity projection. Further, we randomly generate a length-
4 real-valued weight vector w = (0.2,−0.1, 0.24,−0.15)

to represent a circulant matrix, and encode F(w) =
(0.19e0j, 0.064e−2.246j, 0.69e0j, 0.064e2.246j) into attenuators
and PSs in the EM stage. The simulation results in Fig. 9(b)
shows good fidelity (< 1.2% maximum relative error) to the
ground truth results.

B. Comparison Experiments on FFT-Based ONNs

To evaluate our proposed ONN architecture, we conduct
a comparison experiment on a machine learning dataset
MNIST [28], and compare the hardware utilization, model
expressivity among four architectures: 1) SVD-based archi-
tecture [3]; 2) T�U-based architecture [20]; 3) ours without
pruning; and 4) ours with pruning.

We implement the proposed architecture with different con-
figurations in PyTorch and test the inference accuracy on a
machine with an Intel Core i9-7900X CPU and an NVIDIA
TitanXp GPU. We set λ to 0.3 for the Group Lasso regular-
ization term, initialize all trainable weights with a Kaiming-
normal initializer [51], adopt the Adam optimizer [52] with
initial learning rate = 1 × 10−3 and a step-wise exponential-
decay learning rate schedule with decay rate = 0.9. We use
the ideal ReLUs activation function as nonlinearity. All NN
models are trained for 40 epochs with a mini-batch size of 32
till fully converged. The structured sparsity for our proposed

Fig. 9. (a) Simulated output intensities (crosses) and ground truth (circles) of
a 4 × 4 identity circulant matrix-vector multiplication. (b) Simulated output
intensities (crosses) and ground truth (circles) of a 4 × 4 circulant matrix-
vector multiplication, with w = (0.2,−0.1, 0.24,−0.15). E.g., (0, 0, 1, 1) is
the input signal.

FFT-based MLP is defined as the percentage of pruned param-
eters in all parameters, i.e., |{w|‖wij‖2 < T}|/|w|. We call it
block sparsity.

For a fair comparison, all architectures are trained with the
same hyper-parameters and have similar test accuracy in each
experiment configuration. To estimate the component utiliza-
tion and area cost, we adopt exactly the same type of photonic
devices in all architectures, as listed in Table III, and accumu-
late the area of each optical component for approximation.
Placement or routing information is not considered in our
estimation.

In Table IV, the first column indicates different neural
network configurations. The T�U-based architecture adopts
a unique training methodology and claims to have small
accuracy degradation (< 1%) [20], thus we assume it has
approximately the same accuracy as the SVD-based archi-
tecture. In the T�U-based architecture, the total number of
MZIs used to implement an m× n weight matrix is bounded
by n(n+ 1)/2.

Among various network configurations, our proposed archi-
tecture outperforms the SVD-based architecture and the T�U-
based architecture with lower optical component utilization
and better area cost. We normalize all areas to our archi-
tecture with pruning applied and show the normalized area
comparison in Fig. 10. Consistent with analytical formulations
in Section IV, the experimental results show that, as the differ-
ence between input and output channels for each layer in the
original MLPs gets larger, our proposed architecture can save
a larger proportion of optical components. Furthermore, abla-
tion experiments on our structured pruning method validate
the effectiveness of the proposed two-phase training flow. It
can save an extra 30–50% optical components with negligible
model expressivity loss.

C. Comparison Among Different Trainable Transform
Settings

As mentioned in previous sections, we extend our ONN
architecture to MD-based CNNs with trainable frequency-
domain transforms. We will demonstrate several experimental
evaluations on our proposed MD-based CNN architecture.
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TABLE IV
COMPARISON OF INFERENCE ACCURACY AND HARDWARE UTILIZATION ON MNIST DATASET WITH DIFFERENT CONFIGURATIONS. FOR EXAMPLE,
CONFIGURATION (28× 28)-1024(8)-10(2) INDICATES A 2-LAYER NEURAL NETWORK, WHERE THE FIRST LAYER HAS 784 INPUT CHANNELS, 1024

OUTPUT CHANNELS WITH SIZE-8 CIRCULANT MATRICES, AND SO ON

Fig. 10. Normalized area comparison with different model configurations.
Model 1–4 refer to Table IV. SVD refers to [3] and T�U refers to [20].

TABLE V
ACCURACY COMPARISON AMONG FOUR TRAINABLE TRANSFORM

SETTINGS. THE MODEL IS 16× 16-C16-BN-MAXPOOL5-F32-F10.

First, we discuss how different transform settings impact
the CNN performance. Recall that each 2-D frequencydomain
convolution involves total four trainable transforms, denoted
as Trow; Trow;r; Tcol; Tcol;r. We evaluate the performance of
four different transform settings on MNIST dataset: 1) four
transforms are trained independently (AllFree); 2) column-
wise and row-wise convolutions share the same transform as
Trow = Tcol, Trow,r = Tcol,r (Shared); 3) reversed trans-
forms are constrained to be close to the inverse transform as
Trow,r ≈ T −1

row , Tcol,r ≈ T −1
col (Inverse); and 4) transforms

are shared between column-wise and row-wise convolutions
and the inverse constraints are applied (InvShared). Table V
shows the comparison results.

Based on the results, we observe that the inverse constraint
and shared transform produces no benefits in terms of infer-
ence accuracy. Training the original and reversed transforms

across row-wise and column-wise convolutions independently
offers the best results. Thus, we will use AllFree transform
settings for our experiments.

D. Comparison With Hardware-Aware Transform Pruning

To jointly optimize classification accuracy and hardware
cost in terms of area, power, and robustness, we perform
hardware-aware pruning assisted by phase-wrapping Group
Lasso regularization to our proposed trainable transforms. The
weight for LPhaseGL is 0.05, and we set ten epochs for the first
pretraining phase and 40 epochs for incremental structured
pruning.

1) Power Consumption Evaluation: We calculate the
energy cost by summing all phase shifts as they are pro-
portional to power consumption, and show the energy saved
by our pruned transforms in Table VI. We also evaluate the
power consumption by applying pruned trainable transform
in our block-circulant matrix-based MLP architecture. The
block sparsity, transform sparsity T sparsity, power consump-
tion, and area cost are estimated in Table VII. Therefore,
our energy-saving and area-efficient ONN architecture is
more suitable for resource-constrained applications, e.g., edge
computing and online learning tasks [53], [54].

2) Variation-Robustness Evaluation: To evaluate the noise-
robustness of the frequency-domain transform, we inject
device-level variations into PSs to introduce phase program-
ming errors and demonstrate the accuracy and its vari-
ance under different noise intensities σ on MNIST and
FashionMNIST dataset. Specifically, we inject Gaussian noise
�γ ∼ N (0, σ 2) into the γ coefficient of each PS to perturb
its phase response φn = (γ + �γ )v2, where γ is calculated
by the voltage that can produce π phase shift as γ = π/v2

π

and we adopt 4.36 V as the typical value of vπ [3], [45].
Fig. 11 shows that ∼ 80% structured sparsity can be achieved
by our phase-wrapping pruning method, and our pruned train-
able transform outperforms the OFFT structure with over 80%
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TABLE VI
TRANSFORM SPARSITY (T SPARSITY) AND POWER CONSUMPTION

COMPARISON AMONG OPTICAL FFT AND OUR TRAINABLE TRANSFORM

WITH HARDWARE-AWARE PRUNING ON MNIST AND FASHIONMNIST
DATASET. T SPARSITY REPRESENTS HOW MANY COLUMNS OF PSS ARE

PRUNED IN OUR TRAINABLE FREQUENCY-DOMAIN TRANSFORMS. THE

POWER CONSUMPTION ASSUMES MAXIMUM PARALLELISM ACROSS

OUTPUT CHANNELS, THUS, ONE ORIGINAL TRANSFORM AND Cout
REVERSED TRANSFORMS ARE COUNTED FOR EACH LAYER. FOR THE

MNIST DATASET, WE ADOPT THE ONN CONFIGURATION AS

16× 16-C16-BN-RELU-MAXPOOL5-F32-RELU-F10, AND FOR THE

FASHIONMNIST DATASET WE SET THE ONN CONFIGURATION AS

16× 16-C24-BN-RELU-MAXPOOL6-F64-RELU-F10. THE POWER

CONSUMPTION IS ESTIMATED BY THE SUM OF PHASE SHIFTS GIVEN

THAT THE PHASE SHIFT IS PROPORTIONAL TO THE THERMAL TUNING

POWER, I.E., φ ∝ v2. OTHER POWER CONSUMPTION SOURCES, E.G.,
INSERTION LOSS, ARE NOT CONSIDERED FOR SIMPLICITY

TABLE VII
COMPARISON OF BLOCK SPARSITY, FREQUENCY-DOMAIN TRANSFORM

(T ) SPARSITY, NORMALIZED POWER CONSUMPTION, AND ESTIMATED

AREA (cm2) AMONG 1) SVD-BASED ONN; 2)T�U-BASED ONN;
3) OPTICAL FFT; 4) OUR TRAINABLE TRANSFORM WITHOUT PRUNING

TRANSFORMS; AND 5) OUR TRAINABLE TRANSFORM WITH

HARDWARE-AWARE PRUNING ON MNIST DATASET. SVD-BASED AND

T�U-BASED ONN CONFIGURATION IS 28× 28− 400− 10, AND OURS IS

28× 28− 1024(8)− 10(2). ALL ONNS HAVE A SIMILAR INFERENCE

ACCURACY WITH A 0.5% ACCURACY DISCREPANCY AMONG ALL

ARCHITECTURES. BLOCK SPARSITY IS FOR PRUNED CIRCULANT

BLOCKS. T SPARSITY IS FOR PRUNED TRAINABLE FREQUENCY-DOMAIN

TRANSFORMS. THE POWER CONSUMPTION IS NORMALIZED TO

SVD-BASED ONN, WHICH IS ESTIMATED BY THE SUM OF ALL PHASE

SHIFTS GIVEN THAT THE PHASE SHIFT IS PROPORTIONAL TO THE

THERMAL TUNING POWER, I.E., φ ∝ v2

Fig. 11. Robustness comparison among OFFT and pruned trainable transform
on MNIST and FashionMNIST dataset. The error bar is drawn to show the
±1σ accuracy variance from 20 runs. For MNIST dataset, we adopt the ONN
configuration as 16 × 16-C16-BN-ReLU-MaxPool5-F32-ReLU-F10, and for
FashionMNIST dataset we set the ONN configuration as 16 × 16-C24-BN-
ReLU-MaxPool6-F64-ReLU-F10.

power reduction and much better robustness under various
noise intensities.

We also evaluate the robustness on our circulant-matrix-
based MLP architecture. Our FFT-based MLP and trainable

transform-based architecture show superior robustness with
over 97% accuracy on MNIST due to their structured spar-
sity and blocking design, while the SVD-based ONN drops
below 90% due to severe error accumulation.

VII. CONCLUSION

In this work, we proposed a hardware-efficient ONN archi-
tecture. Our proposed ONN architecture leverages block-
circulant matrix representation and efficiently realizes matrix-
vector multiplication via optical fast Fourier transform, saving
2.2−3.7× area cost compared to prior work. Our proposed
two-phase training flow performs structured pruning to our
architecture and further improves hardware efficiency with
negligible accuracy degradation. We extend the proposed
architecture to an optical MD-based frequency-domain CNN,
and propose a trainable transform structure to enable a larger
design space exploration. We demonstrate structured prun-
ing to our trainable transform structures and it achieves less
component usage, over 80% power reduction in CNNs, over
90% power reduction in MLPs, and much better variation-
robustness under device-level noises than prior work.
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