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Abstract—The increasing complexity of semiconductor design,
along with stringent performance, power, and time-to-market re-
quirements, has outpaced the capabilities of traditional Electronic
Design Automation (EDA) methodologies. Conventional design
workflows rely on manual intervention for critical tasks such
as hardware description, synthesis optimization, and verifica-
tion, leading to inefficiencies and scalability limitations. Large
Language Models (LLMs) present a transformative approach
by automating key stages of the design pipeline, enabling in-
telligent synthesis tuning, test generation, and security analysis.
This paper introduces ChipMind, an LLM-driven framework
comprising specialized agents and modules for digital and analog
chip design. ChipMind integrates AI-driven methodologies to
enhance design efficiency, accelerate prototyping, and optimize
key design trade-offs, thereby addressing fundamental challenges
in modern semiconductor development.

Index Terms—AI for chip design, Large Language Models
(LLMs), Electronic Design Automation (EDA), hardware security

I. INTRODUCTION

The growing complexity of semiconductor design, alongside
demands for higher performance, lower power, and faster
development, has outpaced traditional design methodologies.
Traditional Electronic Design Automation (EDA) workflows
rely heavily on human expertise, making them labor-intensive
and inefficient. Artificial Intelligence (AI), particularly Multi-
Modal Large Language Models (LLMs), offers a transforma-
tive solution by automating key stages of the chip design
pipeline, enabling rapid exploration, intelligent optimization,
and automated verification. By reducing time-to-market and
lowering the barrier to entry, LLMs enhance accessibility, im-
prove security analysis, and enable cost-effective prototyping,
making AI-driven design essential for the future of hardware
development.

To fully leverage the benefits of LLMs in chip design, it is
crucial to understand the specific challenges they address and
the improvements they bring. The following key areas high-
light the advantages of incorporating LLM-driven approaches
into chip design:

• Bridging the Specification Gap: The disparity between
high-level, natural language specifications provided by
domain experts and the precise, low-level hardware de-
scriptions required for implementation introduces ineffi-
ciencies and potential misinterpretations. LLMs facilitate

the automated transformation of abstract design intent
into formal hardware representations, enhancing accu-
racy, consistency, and design productivity.

• Accelerating Time-to-Market: Traditional chip design
methodologies are inherently iterative, requiring extensive
synthesis, verification, and optimization cycles, leading
to prolonged development timelines. AI-driven automa-
tion accelerates the process by optimizing design de-
cisions and improving efficiency, significantly reducing
turnaround time while maintaining key design trade-offs.

• Enhancing Design Efficiency and Managing Complex-
ity: The increasing architectural complexity of modern
semiconductor devices challenges traditional design and
optimization methodologies. AI-driven approaches effi-
ciently navigate large design spaces, automate repetitive
tasks, and optimize Power, Performance, and Area (PPA)
trade-offs.

• Democratizing Chip Design for Non-Experts: The
steep learning curve associated with Hardware Descrip-
tion Languages (HDLs) and EDA tools limits accessibil-
ity to chip design. LLM-driven design frameworks lower
the barrier, enabling individuals with minimal hardware
design experience (e.g., industry practitioners) to con-
tribute effectively.

• Enabling Rapid Prototyping and Design Exploration:
LLM facilitates the automated generation and evaluation
of multiple variants, allowing for systematic assessment
of trade-offs before committing to fabrication. This en-
ables a more iterative and agile hardware development
process, mitigating design risks.

• Addressing Limited Market Incentives: Developing
custom silicon for niche applications is often constrained
by high Non-Recurring Engineering (NRE) costs and
limited market potential. LLM-driven design automation
significantly reduces the resource investment required for
hardware development, making it economically viable
to develop specialized, Application-Specific Integrated
Circuits (ASICs) for emerging applications.

• Reducing Costs and Resource Requirements: LLM-
driven methodologies reduce reliance on large engineer-
ing teams by automating critical aspects of the chip
design flow, including synthesis, verification, testing,
and performance tuning. Additionally, LLM-empowered
frameworks contribute to cost-efficient silicon utilization,979-8-3315-2144-8/25/$31.00 ©2025 IEEE



lowering manufacturing expenses and improving yield.
• Enhancing Customization and Adaptability: LLM-

powered frameworks enable the rapid adaptation of
hardware designs to meet domain-specific requirements,
such as specialized AI accelerators, low-power embedded
processors, or high-performance computing architectures.
These methodologies can facilitate tailored optimizations
aligned with workload characteristics.

• Improving Security, Reliability, and Robustness: The
increasing sophistication of hardware security threats,
such as hardware Trojans, necessitates advanced veri-
fication and detection mechanisms. LLM-driven secu-
rity analysis enables automated vulnerability detection,
anomaly identification, and risk assessment, strengthen-
ing the security posture of hardware implementations
while enhancing reliability through predictive failure
analysis.

While LLMs are transforming chip design by automating
complex hardware development tasks, the efficient training
and inference of LLMs themselves depend on specialized
hardware accelerators, which, in turn, can be optimized and
co-designed using LLM-driven methodologies. The increasing
computational demands of large-scale AI models have acceler-
ated the development of domain-specific architectures, such as
TPUs, AI-optimized GPUs, and custom silicon for deep learn-
ing. These advancements illustrate a symbiotic relationship
between AI-driven chip design and AI accelerators, wherein
innovations in one domain directly influence progress in the
other.

This paper presents ChipMind, an LLM-driven agentic
framework designed to automate and optimize the entire
chip design process, covering both digital and analog do-
mains. ChipMind integrates specialized LLM modules/agents
for tasks such as HDL generation, synthesis, testing, SPICE
modeling, and security analysis. LLM-driven approaches have
received considerable attention since the advent of GPT mod-
els. However, all existing solutions typically focus on specific
tasks within the broader domains of chip design, such as digital
or analog design, addressing individual functions like code
generation. To date, no comprehensive framework has been
developed that integrates all facets of the chip design process
in a unified and cohesive manner. This paper presents the first
effort to create a holistic suite of LLM modules designed to
address the full spectrum of chip design tasks, providing an
end-to-end solution for both digital and analog domains. By
utilizing LLM-powered methodologies, ChipMind enhances
design efficiency, scalability, and adaptability, addressing key
challenges in modern semiconductor development. This frame-
work represents a unified approach to chip design, enabling
faster prototyping, improved hardware security, and more
efficient, agile exploration of design trade-offs across both
digital and analog circuits.

The rest of this paper is structured as follows. Section II
reviews related work in AI-driven chip design. Section III
presents the ChipMind architecture, describing its modular and
agentic framework. Section IV examines the application of

ChipMind in digital design, focusing on LLM-driven method-
ologies for HDL generation, synthesis, and test generation.
Section V discusses the role of ChipMind in analog circuit
design, including SPICE modeling and simulation-based opti-
mization. Section VI explores LLM-based techniques for hard-
ware Trojan detection. Section VII introduces a specialized
accelerator for LLM processing, leveraging silicon photonics
to enhance computational efficiency for AI-driven chip design.
Finally, Section VIII provides concluding remarks and outlines
directions for future research.

II. RELATED WORK

A. LLMs for Design Automation and Hardware Security

LLMs have been utilized in multiple stages of EDA, includ-
ing tasks such as code generation, circuit synthesis and design
verification, and security applications such as Trojan insertion,
detection, and mitigation. For Verilog code generation, recent
work fine-tuned existing LLMs with Verilog datasets [1].
The open-source CodeGen LLM outperformed state-of-the-art
commercial models in generating functionally correct designs
[2]. The Chip-Chat project utilized GPT-4 to develop an 8-
bit accumulator-based microprocessor architecture, showcas-
ing the potential of LLMs in hardware design. To support
industrial chip design, Domain-Adaptive Pre-Training (DAPT)
followed by Supervised Fine-Tuning (SFT) was applied to
foundation LLMs, leading to the development of an assistant
chatbot for chip design [3]. Additionally, LLM-based script
generation methods were explored in [4], [5].

The capability of LLMs have been further leveraged to assist
in debugging and verifying design correctness, and exploring
design vulnerabilities. RTLFixer explores LLM agents along
with Retrieval-Augmented-Generation, to address syntax er-
rors in HDL [6]. In [7], authors fix buggy lines in Verilog
by applying LLM-suggested replacement codes. On the other
hand, LLMs have been leveraged for generating malicious
circuits or Trojans in digital circuits. In [8], LLMs are taught
to generate digital Trojans with different types, targeting
DoS and timing attacks. In [9] LLMs are used to identify
specific segments in Verilog codes that can be modified for
Trojan insertion, while in [10], LLMs are harnessed to insert
vulnerabilities e.g., deadlocks, in finite-state machines.

Beyond digital circuits, LLMs have been applied to analog
circuit design. [11] proposed an LLM-based approach for
generating analog circuits with a feedback-enhanced flow
to enable self-correcting analog circuit generation without
requiring LLM training. In [12], LLMs are used to convert
schematics into SPICE netlists by integrating iterative manual
feedback. [13] leverages LLMs for detecting and localizing
analog Trojans within circuit netlists based on prompt engi-
neering and few-shot learning approach. The authors extend
this work [13] in [14], where they explore Trojan mitigation
strategies in A/MS designs.

B. Hardware Accelerators for LLM

Large language models (LLMs) such as GPT-4 [15] and
DeepSeek R1 [16] have undergone a rapid evolution, driven



by advances in deep learning architecture, massive parallelism,
and vast computational resources. Their ability to understand
and generate human language with remarkable fluency has
unlocked new possibilities in diverse applications, from cus-
tomer service and content creation to scientific research and
real-time analytics. This growing use of LLMs and genera-
tive AI has consequently led to extensive efforts to develop
specialized hardware accelerators capable of handling their
enormous computational demands while scaling efficiently in
both performance and power consumption.

Conventional hardware accelerators for LLMs primarily rely
on digital architectures, including GPUs, FPGAs, and ASICs.
GPUs, as widely adopted platforms, offer high through-
put and flexible programmability, with optimized inference
frameworks such as LLama [17], LightSeq2 [18], and Ul-
traFastBERT [19] further improving efficiency. FPGAs have
been explored for low-latency, reconfigurable inference using
various optimizations. Designs like MnnFast [20] and HA-
FPGA [21] focus on memory-efficient data streaming to reduce
bandwidth overhead and data movement, while other works
employ structured weight compression methods, leveraging
block-circulant representations or quantization-aware training
to reduce model size while maintaining accuracy [22], [23].
Dynamic hardware reconfiguration techniques have also been
proposed to adapt FPGA architectures for different NLP
workloads, enhancing utilization and flexibility [24]. Similarly,
ASIC-based accelerators (e.g., Google’s TPU [25], Habana
Gaudi [26]) provide massive parallelism and efficiency ben-
efits, especially for matrix operations central to Transformer-
based LLMs.

In addition to digital accelerators, photonic accelerators,
leveraging the inherent parallelism and low-latency propa-
gation of optics for large-scale matrix multiplications, have
emerged as a promising avenue for ultra-fast, energy-efficient
neural network acceleration. Early photonic designs [27]–[34]
primarily targeted convolutional or fully connected networks,
they often faced challenges such as limited operand encoding
speed, narrow operand-value representations, and scalability
constraints. However, recent advancements have significantly
expanded their capabilities, enabling dynamic, full-range com-
putations for large-scale workloads. For instance, Lightening
Transformer (LT) [35] addresses high-speed reconfigurability
by introducing a dynamic photonic tensor core (DPTC) that
supports full-range tensor multiplication, while TeMPO [36]
employs a time-multiplexed strategy, integrating customized
slow-light modulators, optical splitters, and parallel photocur-
rent accumulation to minimize area and power overhead, mak-
ing it well-suited for large-scale scaling. Optical Transformer
(OT) [37] highlights the potential for scaling energy efficiency
beyond digital systems by performing large-scale matrix multi-
plications with interference-based optical hardware, finding an
asymptotic advantage in energy per multiply–accumulating as
model width grows. Meanwhile, to manage the noise crosstalk
and thermal fluctuations caused by tuning photonic devices,
TRON [38] employs careful microring resonator design and a
hybrid tuning approach that models and reduces these over-

heads, thereby enabling end-to-end inference of Transformer-
based models and marking a significant milestone in large-
scale photonic acceleration.

III. CHIPMIND: OVERVIEW

ChipMind is an agentic, modular LLM-driven framework
designed to automate and optimize chip design workflows
across digital, analog, and security domains (see Fig. 1).
It comprises task-specific LLM modules, each tailored to
a distinct aspect of the design process, ensuring efficiency,
scalability, and continuous refinement.

• LLM for Digital Design Flow, which facilitates HDL
code generation, synthesis, and test automation, enabling
the seamless transformation of high-level specifications
into optimized hardware implementations.

• LLM for Analog Design Flow, which enables SPICE
code generation, circuit topology optimization, and
simulation-driven refinement, improving the precision,
efficiency, and performance of analog circuit design.

• LLM for Hardware Security, which identifies and
mitigates malicious modifications (i.e., hardware Trojans)
in analog circuits.

Each module/agent functions autonomously while aligning
with shared design principles, iterative refinement strategies,
and knowledge-based optimization, ensuring a highly adaptive
and AI-enhanced chip design process.

IV. LLM FOR DIGITAL DESIGN FLOW

The modular and agentic workflow of ChipMind for Digital
Design Flow, as outlined in Algorithm 1, is built on customized
LLM-driven modules, each dedicated to a specific design
task—code generation, synthesis, and test generation. This
structured and flexible pipeline ensures efficient, automated,
and continuously optimized design refinement, where each
LLM module independently processes its task while aligning
with shared constraints and iterative feedback mechanisms to
enhance overall chip design quality.

The process begins with HDL code generation, where a user
provides a high-level design specification consisting of module
names, input/output signals, and, optionally, architectural de-
tails. The LLM for HDL generation translates this specification
into synthesizable HDL, after which syntax validation ensures
correctness before execution. If errors are detected, the LLM
iteratively refines and regenerates the HDL until correctness is
achieved. Once the HDL is validated, the LLM for synthesis
generates a synthesis script, which is executed to convert
the HDL into a gate-level netlist. The achieved PPA metrics
(timing, power, area) are analyzed, and if they do not meet
the target constraints, the LLM queries the knowledge base
(KB) and knowledge graph (KG) to derive improved synthesis
constraints. The process then iterates, updating and refining
the synthesis script until optimal PPA values are achieved.
Following synthesis, the LLM for test generation automatically
generates ATPG test scripts and executes them to analyze
achieved fault coverage. If the coverage is insufficient, the
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Fig. 1: ChipMind Framework: Detailed Components and Workflow Process.

LLM queries KG/KB for optimization strategies and iteratively
refines the test patterns.

As depicted in Algorithm 1, the iterative feedback loop
ensures continuous improvement across all design stages. The
framework leverages LLM-driven optimization, knowledge-
based learning, in-context learning, and iterative validation to
guarantee high-quality HDL generation, optimized synthesis,
and effective test generation. Its modular architecture supports
future enhancements such as place-and-route automation, for-
mal verification, and advanced optimization techniques.

V. LLM FOR ANALOG CIRCUIT DESIGN

Analog circuit design has long been a heavily manual
process, from circuit topology/schematic generation to device
sizing and layout generation. In the entire design process,
extensive circuit simulations are performed to check if various
design constraints and objectives can be met and optimized.
However, such design processes are very tedious and not
scalable. There are some recent efforts on LLM for analog
circuit design [39], but the field is evolving rapidly.

Among all analog design steps, analog circuit schematic or
topology design is the first step. AnalogCoder [40] proposed
the first training-free LLM agent for analog topology design
through Python code generation, i.e., PySpice which can
be mapped to the corresponding SPICE netlist and circuit
topology. Through a feedback-enhanced flow / prompt engi-
neering that includes four-stage checking and tailored domain-
specific prompts, AnalogCoder enables the automated and self-
correcting analog circuit design with a high success rate. To
further allow for designing more complicated analog circuits,
the AnalogCoder flow stores the working basic circuits into
a library, which can then be used as reusable modules to
build more complicated analog circuits. The overall flow of

AnalogCoder is shown in Fig. 2. AnalogCoder also provided a
set of analog circuit benchmarks and compared many baseline
LLM agents (e.g., GPT 4o, Claude 3.5, Llama 3) with the
proposed AnalogCoder techniques. AnalogCoder has been
made open source, including the 24 circuit benchmarks under
test.

Most recently, a domain-specific GPT model AnalogGenie
[41] was proposed to generate analog circuits. It built an
extensive dataset that consists of more than 3,000 distinct
analog circuit topologies with diverse functionalities from
various analog IC design textbooks, etc., and then applied data
augmentation to expand the circuit topologies by over 70×.
Using an expressiveness-enhanced graph representation and
customized tokenizer to pre-train the GPT model, AnalogGe-
nie showed improved scalability to handle a variety of analog
circuits and generate novel designs.

While LLM-based AnalogCoder or AnalogGenie can enable
non-experts to generate circuit topologies efficiently, to meet
stringent performance requirements, sophisticated device siz-
ing optimization is usually needed, sometimes together with
topology/schematic co-optimization. There are many papers
published on analog device sizing, including some recent
ones using reinforcement learning [42]. The recent work [43]
further proposed a data-driven approach by building a sized
topology library and directly searching for properly sized
topologies under given circuit specifications. On the LLM
side, the ADO-LLM work [44] proposed the first LLM-aided
Bayesian optimization (BO) framework to leverage LLM’s
ability to infuse domain knowledge to quickly generate viable
design points for BO in finding high-value design areas
during exploration. How to effectively combine LLM-based
circuit topology generation with sizing while meeting various
stringent design specifications and targets is still an open



Algorithm 1 ChipMind Digital Design Flow

1: Input: Task Specification T (e.g., Code Generation,
Synthesis, or Test Generation), Target Con-
straints (e.g., PPA, Coverage), Max Iterations

2: Output: Optimized and Validated Design Artifact
3: procedure CHIPMIND-WORKFLOW
4: Initialize Task-Specific LLM (Code, Synthesis, or

Test)
5: Generate Initial Artifact (e.g., HDL Code, Synthesis

Script, or Test Script) using LLM
6: Perform Syntax Validation ▷ Ensures correctness

before execution
7: if Syntax Errors Detected then
8: Apply Fixes and Re-generate Artifact
9: end if

10: Execute Task (e.g., Compile HDL, Run Synthesis, or
Generate Test Results)

11: Extract Achieved Metrics (e.g., PPA for Synthesis,
Coverage for Testing)

12: Initialize Optimization Loop
13: while Target Constraints Not Met and Max Iterations

Not Reached do
14: Analyze Achieved Metrics vs. Target Con-

straints
15: Query Knowledge Graph (KG) and Knowledge

Base (KB) for Optimization Strategies
16: Regenerate and Update Artifact Using LLM

with KG/KB Insights
17: Perform Syntax Validation on the Updated

Artifact
18: if Syntax Errors Detected then
19: Apply Changes and Re-generate Artifact
20: end if
21: Execute Updated Artifact
22: Extract New Achieved Metrics
23: end while
24: Store Final Optimized Artifact
25: Return: Optimized and Validated Design Output
26: end procedure

problem for industry-strength applications.
In terms of layout design and optimization, analog circuits

often have a lot more constraints than their digital counterparts,
e.g., symmetric placement and routing [45]. LLM can offer
recommendations on layout constraints and provide human
interactive feedback/insights to improve analog layout per-
formance, as shown by a recent work on the LLM-powered
multi-agent for interactive LayoutCopilot [46]. LayoutCopilot
employs multiple agents, including classifier agent, analyzer
agent, solution refinement agent, and solution adapter agent
to convert natural language instructions into executable script
commands, thus improve the layout design process.

LLM for analog circuit design is a rapidly evolving field.

While some promising results have been shown, there are
still a lot of challenges due to lack of large volume, high-
quality designs/dataset at various levels of abstractions. Our
overarching goal is to have an analog design automation
framework from specification to layout. We expect LLM to
work with other optimization and ML techniques to achieve
holistic and user-friendly design automation and optimization.

VI. LLM FOR HARDWARE TROJANS

The objective of this module is to enhance the detection,
localization, and mitigation of both syntactical and functional
bugs in analog designs. Note that functional bugs, also referred
to as Trojans, are malicious modifications in the circuit netlist.
These Trojans usually occupy small footprint and are activated
only under specific analog stimuli (e.g., voltage), and remain
dormant otherwise. Integrating LLM-guided analysis for Tro-
jan detection in analog designs offers several key advantages.

• Textual analysis capability: Pre-trained LLMs can un-
derstand SPICE syntax, netlist connectivity, and simula-
tion logs, reducing preprocessing effort and improving
engineering productivity.

• Simulation insights: LLMs implicitly learn normal vs.
anomalous nodal behavior through internal attention
mechanisms, aiding anomaly detection.

• Trojan Detection and Localization: By parsing logs
and identifying outlier current/voltage patterns, LLMs can
detect and localize Trojan-impacted nodes in the analog
design.

• No Area and Power Overhead: LLM-based analysis
eliminates the need for additional Trojan detection hard-
ware, ensuring zero area and power overheads.

Fig. 3 illustrates the overall workflow of bug detection and
mitigation.

A. Syntactical Bug Detection

We leverage pre-trained LLMs to detect syntactical bugs in
SPICE netlists. Syntactical bugs may include floating nodes
in the netlist, incorrect instance specifications, or missing
component nodes. Although advanced LLMs such as GPT-
3.5 and GPT-4 excel at understanding SPICE syntax and
component configuration, they often flag syntactically correct
SPICE code as buggy, thereby resulting in increased false
positives [13]. To address this, we exploit a feedback-based
refinement approach. Specifically, the SPICE syntax rules are
iteratively refined/updated based on the LLM response. The
refined rules are then incorporated into the prompt along
with the test netlist for evaluation. The LLM generates a
well-structured bug detection report detailing: (i) identified
syntactical bugs, (ii) location of bugs, and (iii) suggested
corrections of the buggy lines. By applying the iterative
refinement technique, false positives were reduced from 23.9%
to 3.8% across benchmark circuits, including designs from the
open-source AMSNet repository [12], OPAMP, and bandgap
filter.



Fig. 2: AnalogCoder Overview [40]. (a) Previous method with simple prompts. (b) AnalogCoder method for basic circuit
design tasks. The feedback-enhanced design flow enables automated error fixing with LLMs. Successfully designed circuits
are added to the circuit tool library, while failed designs are returned to the LLM for automatic fixing. (c) AnalogCoder
method for composite circuit design tasks. The process adds a step of querying the library to retrieve invocation methods
for subcircuits, which are then integrated into the design prompt to facilitate the design of composite circuits.

Fig. 3: Exploring different applications of LLMs in analog
design security, including bug detection, Trojan detection, and
SPICE netlist correction.

B. Trojan Detection and Localization

To detect analog Trojans, the proposed approach employs
a supervised-learning framework that teaches the LLM to
analyze netlists and detect Trojan-induced anomalies from
current and voltage simulation logs [13]. The supervised-
learning rules are crafted based on the following Trojan-
induced anomalies: (i) deviation in primary output voltage,
(ii) abnormal voltage deviation in Trojan-impacted nodes of
the circuit, and (iii) anomalous surge of transistor current.

To enhance learning, the LLM is provided with supervised-
learning rules along with few-shot examples of both Trojan-
free and Trojan-inserted netlists. This enables it to establish
correlations between anomalies in the node voltage/current
behavior and Trojan presence. The netlist, current simula-
tion log, and voltage simulation log are fed as inputs to

the LLM for evaluation. The LLM generates a structured
Trojan diagnosis report, identifying the Trojan lines in the
netlist, the Trojan-impacted nodes, and a detailed reasoning
explaining the detection based on anomalous deviations in the
log files. Additionally, the LLM assigns a confidence score
corresponding to each suspected Trojan-impacted node. The
confidence score is critical in determining the likelihood of
Trojan presence, further enhancing the reliability of LLM-
based analysis. The proposed approach achieves an average
Trojan coverage of 84%, a true-positive rate of 93.4%, and
precision of 90.3% across analog benchmark circuits.

C. Trojan Mitigation

In the scenario where list of Trojan-impacted nodes are
identified, an absence of verification and mitigation techniques
can significantly impact the detection accuracy. We address
this by providing an automated tool, SPICED+, for Trojan
detection as well as mitigation [14]. SPICED+ integrates
LLM-guided analysis with iterative netlist modification and
simulation-based validation of circuit performance. It analyzes
the HSPICE-generated simulation logs of the netlist-under-
evaluation, comparing them against pre-defined performance
specifications using the SPICED tool [13]. If anomalies are
identified, SPICED+ leverages a systematic evaluation by
iteratively removing the Trojan lines identified by SPICED, re-
simulating the modified netlist using HSPICE, and comparing
results to determine if the Trojan is mitigated or if the circuit
performance degrades. The framework maintains a data man-
agement system to restore the previous netlist state, preventing
modifications in the non-Trojan lines. Key decisions in the
workflow, such as removing, retaining, or restoring suspect
lines, are guided by pre-defined rules encoded as Thought
and Action, enabling automated verification without manual
intervention. SPICED+ achieves an average TMR of 94.6%
and an average FPRtr of 1.4% for the evaluated benchmark



circuits, where TMR is the percentage of Trojan lines that
SPICED+ successfully removes from the netlist and FPRtr

is the percentage of non-Trojan lines that are incorrectly
classified as malicious by the LLM.

VII. ELECTRONIC-PHOTONIC HETEROGENEOUS LLM
ACCELERATORS

While LLMs are transforming semiconductor design, se-
curity, and verification by automating complex workflows,
their own computational demands are rapidly escalating. The
increasing scale of generative AI models necessitates special-
ized hardware accelerators optimized for throughput, energy
efficiency, and scalability. While conventional digital acceler-
ators such as GPUs, TPUs, and ASICs have made significant
strides, the increasing model size and complexity of AI
models introduce severe memory bottlenecks, excessive power
consumption, and scalability limitations. Emerging AI comput-
ing platforms, particularly photonic computing and electronic
processing-in-memory (PIM) architectures, offer promising
solutions by reducing data movement, leveraging massive
parallelism, and unlocking new levels of performance for
LLM acceleration. In the following sections, we review state-
of-the-art (SoTA) photonic and PIM-based AI accelerators,
discuss cross-layer co-optimization techniques, and highlight
their current limitations while proposing a hybrid computing
paradigm that integrates the strengths of both approaches to
achieve breakthrough performance in LLM acceleration.

A. Photonic Accelerators for Language Models

Photonic accelerators leverage the parallelism and low-
latency propagation of optics to perform speed-of-light matrix
operations with superior energy efficiency. Most photonic
accelerators are based on static photonic tensor cores (PTCs),
which encode weight matrices into circuit transmissions to
efficiently perform stationary matrix-vector multiplications
(MVMs) on the input optically encoded vectors, i.e., y = Wx.
For example, PTCs based on microring resonator (MRR)
weight banks or Mach-Zehnder interferometer (MZI) arrays
have been widely explored to build optical multi-layer per-
ceptron (MLP) and convolutional neural networks (CNNs),
showing orders-of-magnitude higher TOPS and TOPS/W than
their digital electronics counterparts [27], [31], [47]. However,
due to their weight-stationary nature, these architectures are
inefficient for dynamic tensor operations in Transformer-based
models, particularly in self-attention layers that require matrix-
matrix multiplications such as QK⊤. This limitation has
driven research toward dynamic photonic tensor cores, where
both matrix operands can be reprogrammed at high speed to
support arbitrary positive/negative matrix encoding.
Example Design 1: Lightening-Transformer (LT) [35] exem-
plifies this paradigm by leveraging spatial/spectral parallelism
in a coupler crossbar array, enabling optically encoded dy-
namic dot-product computations, i.e., z = x⊤y. It further
enables one-shot matrix-matrix multiplications Z = X × Y
using multiple wavelengths for parallel processing. Beyond its

innovative dynamic PTC design, LT integrates architecture-
level optimizations, including on-chip optical interconnects
for efficient data broadcast and advanced buffering strategies
to hide memory access latency. LT achieves >2.6× energy
reduction and >12× lower latency compared to prior pho-
tonic accelerators and delivers 2-3 orders of magnitude lower
energy-delay product than electronic Transformer accelerators
while maintaining digital-comparable accuracy [35].
Example Design 2: Building on the coupler array PTC archi-
tecture, TeMPO [36] introduces a time-multiplexed computing
methodology to address the longstanding ADC bottleneck
in photonic accelerators. Instead of immediately converting
partial products into the digital domain, TeMPO aggregates
them spatially via photocurrent summation and temporally
via current integrators in the analog domain, significantly
lowering both power consumption and system complexity.
To further improve hardware utilization, TeMPO shares a
common set of input modulators and reuses a single pool of
analog integrators and ADCs for partial-product accumulation
at the tile level. This amortizes the overhead of additional
photonic components, improving efficiency and scalability.

By tailoring customized computing-specific photonic com-
ponents to the demands of analog AI inference, TeMPO effec-
tively mitigates key challenges such as large device footprints
and high tuning power, further advancing the feasibility of
photonic AI accelerators. TeMPO delivers digital-comparable
task accuracy with superior quantization/noise tolerance. It
achieves a 368.6 TOPS peak performance, 22.3 TOPS/W en-
ergy efficiency, and 1.2 TOPS/mm2 compute density, pushing
the Pareto frontier in AI hardware.

While photonic accelerators have demonstrated promising
performance for LLM inference, they remain an emerging
technology with several critical challenges that hinder their
practical deployment in real-world AI applications.
➊ Hardware Robustness: As inherently analog AI hardware,
photonic accelerators suffer from computing fidelity degra-
dation due to various hardware non-idealities, such as pro-
cess variations, thermal fluctuations, and fabrication variation-
induced errors. For example, LT and TeMPO both rely on
coherent optical interference for computing, where phase
stability is essential to preserving the integrity of encoded
data. However, even small fabrication errors or temperature-
induced phase shifts can disrupt the accuracy of computations,
which can be further amplified for deep models. Robust
error compensation and adaptive calibration techniques are
necessary to mitigate these effects and ensure reliable LLM
acceleration in practical deployment [48]–[50].
➋ Numerical Precision Constraints: Photonic LLM ac-
celerators encode data using optical signal magnitudes or
intensities, requiring high-speed digital-to-analog converters
(DACs) and ADCs for encoding and readout. However, the
power consumption of DACs/ADCs scales exponentially with
bit precision, making high-resolution conversion infeasible for
energy-efficient operation. Additionally, analog circuit noise
further limits the effective number of bits (ENOB) that can be
reliably supported. As a result, photonic accelerators typically



Property SRAM 22nm ReRAM 32nm Photonics
Resolution 1-bit × 8 cells=8-bit 2-bit × 4 cells = 8-bit 4∼6-bit
Tile Size 256 crossbars, 128×128 64 crossbars, 128×128 2 cores, 14×14
ADC/tile 256 SARADC 7-Bit 64 SARADC 8-Bit 392 SARADC 8-Bit
Cell Area < 1µm2 < 1µm2 > 1000µm2

Arch Size 100 Tiles 100 Tiles 2 Tiles
Program latency ∼ 1 ns ∼ 100 ns ∼ 100 ps

Static power Medium Low High
Clock 100 MHz 100 MHz 3 GHz

TABLE I: Comprehensive comparison of multi-tile accelera-
tors with SRAM, ReRAM, and photonics.

operate at 4-6 bit precision, leading to quantization errors
that may degrade LLM inference accuracy. Addressing this
limitation requires hybrid digital compensation and precision-
aware AI model co-design to maintain numerical accuracy
while preserving the energy efficiency of photonic computing.

B. PIM-based Accelerators

PIM accelerators co-locate storage and computation to min-
imize data movement, a major source of inefficiency in large-
scale AI workloads. Designs such as ISAAC [51] leverage
non-volatile crossbar arrays (e.g., ReRAM [52], MRAM [53])
to directly perform matrix multiplications by applying acti-
vation vectors to wordlines and accumulating partial sums
along bitlines. This weight-stationary approach is particularly
effective for large matrix-vector operations, significantly re-
ducing both memory traffic and overall power consumption.
To improve numerical precision, PIM architectures employ
bit-slicing techniques, concatenating multiple partial products
with different bit significance to achieve precision beyond 8
bits. As electronic memory cells are ultra-compact in size, it
can afford to use spatial parallelism for bit-slicing. Addition-
ally, SRAM-based PIM architectures, due to their fully digital
nature, generally exhibit high hardware robustness against
process variations and environmental fluctuations. However,
purely PIM-based solutions face non-trivial challenges that
limit their ability to efficiently support highly dynamic work-
loads such as Transformers.
➊ Memory Cell Endurance: Non-volatile PIM technologies
like ReRAM and MRAM support weight-stationary dataflows
but suffer from limited memory cell re-write endurance, mak-
ing them unsuitable for frequent weight reconfiguration. This
limitation poses challenges for Transformer-based workloads,
which require dynamic model updates and matrix operand
remapping during execution.
➋ Power Overhead: Even with SRAM-based PIM [54],
where write endurance is less of a concern, the programming
overhead for large networks remains non-trivial and may
lead to inflated setup times. Moreover, high-resolution PIM
computations require extensive ADCs, leading to increased
power draw from ADC operations, leakage currents, and
switching costs within large crossbar arrays. These factors
make it challenging to scale PIM accelerators for energy-
efficient high-performance LLM inference.

C. Photonics-PIM Hybrid LLM Accelerator

Table I summarizes the key characteristics of SRAM-,
ReRAM-, and photonics-based accelerators, comparing their

resolution, latency, power consumption, and integration cost.
Each technology has distinct strengths that can complement
one another in AI acceleration. Photonic accelerators excel
at executing high-speed matrix multiplications at GHz-scale
frequencies, making them well-suited for compute-bound,
dynamic workloads. In contrast, PIM accelerators, though
relatively slower, are highly efficient for memory-bound opera-
tions and weight-stationary computations that require frequent
data access with minimal movement.

Since neither approach alone provides an optimal balance
of speed, precision, power efficiency, and flexibility, these in-
sights motivate a hybrid computing architecture that integrates
both PIM and photonic tiers to leverage their complementary
strengths: ➊ Photonic cores accelerate high-throughput layers,
such as multi-head attention in Transformers, by performing
ultra-fast matrix multiplications with minimal latency. ➋ PIM
cores provide non-volatile storage (e.g., ReRAM) or high-
speed SRAM arrays for tasks requiring weight-stationary
operations or higher numerical precision.
Example Design: An initial exploration of heterogeneous ac-
celerators with multiple emerging technologies introduces a
multi-tier accelerator that integrates ReRAM/SRAM PIM and
photonic accelerators. This hybrid architecture leverages the
strengths of each computing paradigm, where photonic cores
accelerate high-speed, low-precision matrix multiplications
while PIM tiles efficiently handle memory-bound, weight-
stationary operations with high precision and robustness. With
smart workload partitioning across 3 computing tiers, we can
balance the high performance of photonics for most computing
tasks and use a small portion of high-precision PIM to
compensate for the noise-induced accuracy drop. Evaluations
on both language models (Pythia-70M [55]/TinyStories [56])
demonstrate that this hybrid design yields 2.74× better energy
efficiency and 3.47× lower latency compared to homogeneous
architectures or naive workload partitioning methods. By in-
telligently orchestrating workloads across photonic and PIM
tiers, this hybrid computing platform enables an efficient and
scalable hybrid AI accelerator for next-generation language
and generative AI models.

VIII. CONCLUSION

This paper introduced ChipMind, an LLM-driven frame-
work that integrates specialized agents and modules for dig-
ital and analog chip design, including hardware security. By
leveraging AI-driven methodologies and agentic workflows,
ChipMind enhances design efficiency, accelerates prototyp-
ing, and optimizes key trade-offs in designing digital or
analog circuits, facilitating intelligent synthesis optimization,
test generation, and security assessment. Therefore, ChipMind
efficiently addresses the growing complexity of semiconductor
design, along with the growing demands for performance,
power efficiency, and rapid development cycles. Furthermore,
ChipMind extends conventional workflows, which rely on
traditional EDA tools and manual intervention for critical
tasks such as hardware description, synthesis optimization, and



verification. By mitigating inefficiencies and scalability limita-
tions inherent in traditional approaches, ChipMind represents
a novel research direction toward AI-driven, automated, and
scalable semiconductor design methodologies.
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