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Heavily relies on manual design in several months!
Time-consuming & Not scalable for large-scale EPICs
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What Makes PIC Placement Different

¢+ Waveguide routing is highly sensitive to component placement

» Curvilinear structure and highly space-consuming
» Curvy bend with minimum bend radius
» \Waveguide crossing: 90° intersection in the same layer

-----, Bend Al
«-=n T N Port misalignment
. radius . Crossing s
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e.g. 20x20 um?
Waveguide should

» Directional port alignment satisfy the bend radius

» Inappropriate placement leads to misalignment

» Limited routing layer: e.g. one silicon layer
» Share the same silicon layer with component: routing resource contention

Routability highly depends on the placement solution!



Current PIC Placement Solutions

¢+ Schematic-Driven Manual Layout: Place and route simultaneously
W Manually plan routing paths in schematic
Path is also treated as photonic components
»  Segment, bend, crossing

Place each component carefully

» Spacing constraint

» Alignment constrain

Need Back-and-forth modifications

@ Time-consuming & not scalable

¢ Existing automated PIC placement works
> PLATON [Beuningen+, ISPD’16]: minimize crossings
> PlanarONoC [Chuang+, DAC’ 18]: planar graph-based method
» CPONoC [Chen+, ASP-DAC’25]: introduce device flipping and rotation
. Fail to account for critical routability considerations -> illegal layout
» Bend radii, port accessibility, and area overhead of crossings 4




What We Need in Automated PIC Placement?

+ Aware of port orientation and accessibility
»  Improper port location introduces excessive bends and detours

»  Satisfy basic spacing demand for device port access
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¢+ Aware of spacing needed by bends and crossings Not enough spacing
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¢ Satisfy the user-defined constraints
» E.g., component alignment constraints
»  Reduce crosstalk and achieve phase matching

Y-denfer .alignrr.\en.t



Proposed PIC Placer: Apolio

¢+ How to be aware of port orientation during placement?
»  Sol: Asymmetric bending-aware wirelength

¢+ How to save spacing for bending and crossings?
»  Sol: Routing-informed net spacing model

¢+ How to satisfy the designer constraints?
»  Sol: Conditional projected gradient descent

¢ How to stabilize the mixed-size PIC placement?
»  Sol: Blockwise adaptive Nesterov optimizer



Placement Formulation with Designer Constraints

mlnz WL(e;x,y) + NS(e; x,y) + D(x,y)
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Minimize Spread cells

Gimi
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spacing fields

s.t.alignment constraints

¢+ Enforce constraints by conditional
projected gradient descent
»  Apply soft projection before position update
»  Gradually tighten constraints
x; = (1= 5¢)  x; + St * Xpew,
1-— cos(”t/T)
2
» e.g., Alignment: move toward avg. locations
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WL(e; x,y): Wirelength function (reduce bend)

NS(e; x,y): Routing-informed net spacing model
(improve routability)

D(x,y): component density function (ePlace)
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Asymmetric Bending-Aware Wirelength mmz: WL(e;x,y)
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Routing-Informed Net Spacing Model minz NS(e; x,y)

¢+ Root cause for routing failure: port accessibility, crossing insertion
¢ Estimated net spacing = basic spacing + crossing spacing

— |

Basic spacing for net; = sum(p4, pz) Crossing spacing for net; = #cross X crossg,e

Estimate by port count and bending radius Estimate #cross by # of wire intersections
every 100 iterations

+ MR-

3 crossings to
+ be inserted




Blockwise Adaptive Nesterov Optimizer

¢+ Challenge for optimization stability and convergence

»  Significant heterogeneity in cell sizes...
» Mach-Zehnder modulators (1000x 100 um?); filler (10x 5 um?)
» Idea: decouple large cell updates from small cells
»  Sol: independent Barzilai-Borwein step for different variables

» 4 variable blocks: movable instances and dummy fillers in x and y directions
» Encourage faster convergence of filler cells to surround movable instances

Movable pos x Movable pos_y Filler pos_x Filler pos_y

A EOmEm
- SSEEE=
¢ Stabilize the optimization when cells are near-optimal

»  Sol: global cosine annealing schedule
» Gradually reduce the effective step size over time
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Experimental Setup

¢+ Machine

> AMD EPYC 7763 Linux server with NVIDIA RTX A6000 GPU

¢+ Benchmark: photonic computing unit
»  Clements: MZI array for matrix multiply [Shen+, NatPhoton’17]

» Regular structure, no crossing

»  ADEPT: auto-searched photonic tensor core [Gu+, DAC’22]
» Multi-port, Irregular, high density, unavoidable crossings

» 2 settings with different area budget:

» -S: compact die size with a 5 ym bending radius

» -L: spacious die size with a 10 ym bending radius

¢ Placers for comparison

DREAMPlace: VLSI placer

w/ routability optimization
[Lin+, TCAD’20]

Cypress: PCB placer

w/ crossing optimization
[Zhang+, ISPD’25]

Clements
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Routability Comparison

¢ Apollo outperforms other placers in routability
» Waveguide routing using PIC router: LIDAR [Zhou+, ISPD’25, TCAD'25]
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Apollo Placement Visualization
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Final GDSII Layout Visualization

Layout generated by Cypress

Layout generated by Apollo
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Routing-informed placement
leads to compact, routable layout

Photonic tensor core: ADEPT_32x32

Routed by our PIC router - LIDAR [Zhou+, ISPD’25, TCAD'25]
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