

QOC: <u>Quantum On-Chip Training with</u> Parameter Shift and Gradient Pruning

Hanrui Wang^{1*}, Zirui Li^{2*}, Jiaqi Gu³, Yongshan Ding⁴, David Z. Pan³, Song Han¹ ¹Massachusetts Institute of Technology, ²Shanghai Jiao Tong University, ³University of Texas at Austin, ⁴Yale University

Outline

- Overview
- Background
- QOC Methodology
- Evaluation
- TorchQuantum Library
- Conclusion

Outline

Overview

- Background
- QOC Methodology
- Evaluation
- TorchQuantum Library
- Conclusion

QOC Overview

- Conventional: train on classical simulator
 - Unscalable
- QOC: train on quantum machine
 - Calculates gradients on quantum machines
 - Scalable

Outline

- Overview
- Background
- QOC Methodology
- Evaluation
- TorchQuantum Library
- Conclusion

NISQ Era

- Noisy Intermediate-Scale Quantum (NISQ)
 - **Noisy**: qubits are sensitive to environment; quantum gates are unreliable

Single-qubit Pauli-X error 🗸 🗸 🗸 🗸 🗸 🗸 🗸	
Avg 1.718e-3 ▼	
min 1.470e-4	max 7.486e-2
0.007	
CNOT error	\checkmark
Avg 6.973e-2	
min 5.403e-3	max 1.000e+0
Gate Error Rate	

https://quantum-computing.ibm.com/

NISQ Era

- Noisy Intermediate-Scale Quantum (NISQ)
 - **Noisy**: qubits are sensitive to environment; quantum gates are unreliable
 - Limited number of qubits: tens to hundreds of qubits

Google Sycamore https://www.nature.com/arti cles/s41586-019-1666-5

IBM Washington https://quantum-computing.ibm.com/

Gate Error Rate https://quantum-computing.ibm.com/

Parameterized Quantum Circuits (PQC)

- Parameterized Quantum Circuits (PQC)
- Quantum circuit with fixed gates and parameterized gates

Parameterized Quantum Circuits (PQC)

- Parameterized Quantum Circuits (PQC)
- Quantum circuit with fixed gates and parameterized gates

- PQCs are commonly used in hybrid classical-quantum models and show promises to achieve quantum advantage
 - Variational Quantum Eigensolver (VQE)
 - Quantum Neural Networks (QNN)
 - Quantum Approximate Optimization Algorithm (QAOA)

Challenge of On-chip Training: noise

• Noise reduces reliability of on-chip computed gradients

Challenge of On-chip Training: noise

- Noise reduces reliability of on-chip computed gradients
- Small magnitude gradients have large relative errors

Outline

- Overview
- Background
- QOC Methodology
- Evaluation
- TorchQuantum Library
- Conclusion

Parameter Shift Rules

• Calculate the gradient of θ w.r.t. $f(\theta)$.

Parameter Shift Rules

• Shift θ twice

Parameter Shift Rules

- This formula is valid to all rotation gates
 - RZ, RY, RX, RXX, RZZ
- One gradient requires two runs on real quantum machine

$$\frac{\partial}{\partial\theta}f(\theta) = \frac{1}{2}\left(f\left(\theta + \frac{\pi}{2}\right) - f\left(\theta - \frac{\pi}{2}\right)\right)$$

• Step 1: Run on QC without shift to obtain *f*

• Step 2: Further forward to get *Loss*

• Step 3: Backpropagation to calculate $\frac{\partial Loss}{\partial f(\theta)}$

• Step 4: Shift twice and run on QC to calculate $\frac{\partial f(\theta)}{\partial \theta}$

Probabilistic Gradient Pruning

• Small magnitude gradients have large relative errors

Probabilistic Gradient Pruning

Accumulation Window followed by Pruning Window repeatedly

Accumulation Window

• Keep a record of accumulated gradient magnitude

Accumulation Window

• Keep a record of accumulated gradient magnitude.

Accumulation Window

• Keep a record of accumulated gradient magnitude

Pruning Window

Normalize the accumulated gradient magnitude to a probability distribution

Pruning Window

 Prune the calculation of some gradients according to the probability distribution

Outline

- Overview
- Background
- QOC
- Evaluation
- TorchQuantum Library
- Conclusion

Evaluation

- Benchmarks
 - Quantum Machine Learning task: MNIST 4-class, 2-class, Fashion MNIST 4class, 2-class, Vowel 4-class
 - Variational Quantum Eigensolver task: H2 molecule
- Quantum Devices
 - IBMQ
 - #Qubits: 5 to 7
 - Quantum Volume: 8 to 32
- Circuit architecture
 - RZZ+RY, RXYZ+CZ, RZX+RXX

- Classical Train:
 - Train on classical simulator and test on real QC

- QC Train:
 - Train and test the model on real QC

- QC Train-PGP (QOC):
 - Train and test on real QC with gradient pruning

- Gradient pruning can brings **2%~4%** accuracy improvements
- Pruning accelerate convergence

VQE H2 Training Curves

• Estimated ground state energy (y-axis) is the lower the better

VQE H2 Training Curves

• The loss on real QC is **higher** than that on classical computer

35

VQE H2 Training Curves

Gradient pruning can reduce the gap between quantum and classical

Hyperparameters

- Hyperparameter setting:
 - Pruning ratio 0.7

Hyperparameters

- Hyperparameter setting:
 - Pruning ratio 0.7
 - Accumulation window width: 1

Hyperparameters

- Hyperparameter setting:
 - Pruning ratio 0.7
 - Accumulation window width: 1
 - Pruning window width: 2

Outline

- Overview
- Background
- QOC
- Evaluation
- TorchQuantum Library
- Conclusion

Open-source: TorchQuantum

- TorchQuantum An open-source library for interdisciplinary research of quantum computing and machine learning
- <u>https://github.com/mit-han-lab/torchquantum</u>

Open-source: TorchQuantum

- TorchQuantum An open-source library for interdisciplinary research of quantum computing and machine learning
- https://github.com/mit-han-lab/torchquantum

- Quantum ML
 - Quantum neural networks
 - Quantum kernel methods

Open-source: TorchQuantum

- TorchQuantum An open-source library for interdisciplinary research of quantum computing and machine learning
- https://github.com/mit-han-lab/torchquantum

ML optimizes quantum compilation

TorchQuantum Features

- Features
 - Easy construction of parameterized quantum circuits such as Quantum Neural Networks in PyTorch
 - Support batch mode inference and training on GPU/CPU, supports highly-parallelized training
 - Support easy deployment on real quantum devices such as IBMQ
 - Provide tutorials, videos and example projects of QML and using ML to optimize quantum computer system problems

TorchQuantum Examples & Tutorials

TorchQuantum Tutorials Opening

Hanrui Wang MIT HAN Lab

Ki.

TorchQuantum Tutorials Quanvolutional Neural Network

Zirui Li, Hanrui Wang MIT HAN Lab

HIT HANLAL

Hii HANLAL

Č.

Outline

- Overview
- Background
- QOC
- TorchQuantum
- Evaluation
- Conclusion

Conclusion

- QOC: first experimental demonstration of quantum on-chip training
 - Higher scalability
 - Over 90% and 60% accuracy for 2-class and 4-class classification tasks
- Gradient pruning reduces QC running time by **2x**
- Open-sourced **TorchQuantum** library for Quantum + ML research

