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ABSTRACT
Parameterized Quantum Circuits (PQC) are promising towards quan-
tum advantage on near-term quantum hardware. However, due to the
large quantum noises (errors), the performance of PQC models has a
severe degradation on real quantum devices. Take Quantum Neural
Network (QNN) as an example, the accuracy gap between noise-free
simulation and noisy results on IBMQ-Yorktown for MNIST-4 classi-
fication is over 60%. Existing noise mitigation methods are general
ones without leveraging unique characteristics of PQC; on the other
hand, existing PQC work does not consider noise effect. To this end,
we present QuantumNAT, a PQC-specific framework to perform
noise-aware optimizations in both training and inference stages to
improve robustness. We experimentally observe that the effect of
quantum noise to PQC measurement outcome is a linear map from
noise-free outcome with a scaling and a shift factor. Motivated by
that, we propose post-measurement normalization to mitigate the
feature distribution differences between noise-free and noisy sce-
narios. Furthermore, to improve the robustness against noise, we
propose noise injection to the training process by inserting quantum
error gates to PQC according to realistic noise models of quantum
hardware. Finally, post-measurement quantization is introduced to
quantize the measurement outcomes to discrete values, achieving
the denoising effect. Extensive experiments on 8 classification tasks
using 6 quantum devices demonstrate that QuantumNAT improves
accuracy by up to 43%, and achieves over 94% 2-class, 80% 4-class,
and 34% 10-class classification accuracy measured on real quantum
computers. The code for construction and noise-aware training of
PQC is available in the TorchQuantum library.

1 INTRODUCTION
Quantum Computing (QC) is a new computational paradigm that
can be exponentially faster than classical counterparts in various
domains. Parameterized Quantum Circuits (PQC) are circuits con-
taining trainable weights and are promising to achieve quantum
advantages in current devices. Among various PQCs, Quantum Neu-
ral Network (QNN) is a popular algorithm in which a network of
parameterized quantum gates are constructed and trained to embed
data and perform certain ML tasks on a quantum computer, similar
to the training and inference of classical neural networks.

Currently we are in the Noisy Intermediate Scale Quantum (NISQ)
stage, in which quantum operations suffer from a high error rate of
10−2 to 10−3, much higher than CPUs/GPUs (10−6 FIT). The quan-
tum errors unfortunately introduces detrimental influence on PQC
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Figure 1: Left: Current quantum hardware has much larger
error rates (around 10−3) than classical CPUs/GPUs. Right:
Due to the errors, PQC (QNN) models suffer from severe accu-
racy drops. Different devices have various error magnitudes,
leading to distinct accuracy. These motivate QuantumNAT, a
hardware-specific noise-aware PQC training approach to im-
prove robustness and accuracy.

accuracy. Figure 1 shows the single-qubit gate error rates and the
measured accuracy of classification tasks with QNN on different hard-
ware. Three key observations are: (1) Quantum error rates (10−3) are
much larger than classical CMOS devices’ error rates (10−6 failure
per 109 device hours). (2) Accuracy on real hardware is significantly
degraded (up to 64%) compared with noise-free simulation. (3) The
same QNN on different hardware has distinct accuracy due to dif-
ferent gate error rates. IBMQ-Yorktown has a five times larger error
rate than IBMQ-Santiago, and higher error causes lower accuracy.

Researchers have proposed noise mitigation techniques [16, 21]
to reduce the noise impact. However, they are general methods with-
out considering the unique characteristics of PQC, and can only be
applied to PQC inference stage. On the other hand, existing PQC
work [3, 8] does not consider the noise impact. This paper proposes
a PQC-specific noise mitigation framework called QuantumNAT
that optimizes PQC robustness in both training and inference stages,
boosts the intrinsic robustness of PQC parameters, and improves
accuracy on real quantum machines.

QuantumNAT comprises a three-stage pipeline. The first step, post-
measurement normalization normalizes the measurement outcomes
on each quantum bit (qubit) across data samples, thus removing the
quantum error-induced distribution shift. Furthermore, we inject
noise to the PQC training process by performing error gate insertion.
The error gate types and probabilities are obtained from hardware-
specific realistic quantum noise models provided by QC vendors.
During training, we iteratively sample error gates, insert them to
PQC, and updates weights. Finally, post-measurement quantization is
further proposed to reduce the precision of measurement outcomes
from each qubit and achieve a denoising effect.

In this paper, we are mainly using QNNs as benchmarks but the
techniques can also be applied to other PQCs. The contributions of
QuantumNAT are as follows:
• A systematic pipeline to mitigate noise impact: post-measurement
normalization noise injection and post-measurement quantization.
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Figure 2: Quantum Neural Networks Architecture. QNN has multiple blocks, each has an encoder to encode classical values to
quantum domain, quantum layers with trainable weights, and a measurement layer that obtains classical values.

• Extensive experiments on 8ML tasks with 5 different design spaces
on 6 quantum devices show that QuantumNAT can improve ac-
curacy by up to 42%, 43%, 23% for 2-class, 4-class and 10-class
classification tasks and demonstrates over 94%, 80% and 34% accu-
racy for 2-, 4-, and 10-classifications on real quantum hardware.

• The code for construction and noise-aware training of PQC is
available at the TorchQuantum library. It is an convenient infras-
tructure to query noise models from QC providers such as IBMQ,
extract noise information, perform training on CPU/GPU and fi-
nally deploy on real QC.

2 BACKGROUND AND RELATEDWORK
QML and QNN. Quantum machine learning explores performing
ML tasks on quantum devices. The path to quantum advantage on
QML is typically provided by the quantum circuit’s ability to gen-
erate and estimate highly complex kernels, which would otherwise
be intractable to compute with conventional computers. They have
been shown to have potential speed-up over classical counterparts
in various tasks, including metric learning, data analysis, and prin-
cipal component analysis. Quantum Neural Networks is one type
of QML models using variational quantum circuits with trainable
parameters to accomplish feature encoding of input data and perform
complex-valued linear transformations thereafter. Various theoret-
ical formulations for QNN have been proposed such as quantum
Boltzmann machine [1] and quantum classifier [3, 17, 18, 20], etc.
Quantum error mitigation. As the error forms the bottleneck of
the quantum area. Researchers have developed various error mitiga-
tion techniques [21]. Extrapolation methods [16] perform multiple
measurements of a quantum circuit under different error rates and
then extrapolate the ideal measurement outcomes when there is no
noise. [11] trains PQC using RL with noisy simulator. QuantumNAT
is fundamentally different from existing methods: (i) Prior work
focuses on low-level numerical correction in inference only; Quan-
tumNAT embraces more optimization freedom in both training and
inference. It improves the intrinsic robustness and statistical fidelity
of PQC parameters. (ii) PQC has a good built-in error-tolerance which
motivates QuantumNAT’s post-measurement quantization to reduce
the numerical precision of intermediate results while preserving ac-
curacy. (iii) QuantumNAT has a small overhead (<2%), while others
introduce high measurements, circuit complexity cost, etc. We show
that existing extrapolation method is orthogonal to QuantumNAT
in Section 4.
Quantization and noise injection of classical NN. To improve
NN efficiency, extensive work has been explored to trim down redun-
dant bit representation in NNweights and activations [4, 19]. Though
low-precision quantization limits the model capacity, it can improve
the generalization and robustness [12]. An intuitive explanation is
that quantization corrects errors by value clamping, thus avoiding

cascaded error accumulation. Moreover, by sparsifying the parameter
space, quantization reduces the NN complexity as a regularization
mechanism that mitigates potential overfitting issues. Similarly, in-
jecting noises into neural network training is demonstrated to help
obtain a smoothed loss landscape for better generalization [14].

3 NOISE-AWARE PQC TRAINING
We use QNN as the benchmark PQC in this work. Figure 2 shows
the QNN architecture. The inputs are classical data such as image
pixels, and the outputs are classification results. The QNN consists
of multiple blocks. Each has three components: encoder encodes the
classical values to quantum states with rotation gates such as RY;
trainable quantum layers contain parameterized gates that can be
trained to perform certain ML tasks; measurement part measures
each qubit and obtains a classical value. The measurement outcomes
of one block are passed to the next block. For the MNIST-4 example
in Figure 2, the first encoder takes the pixels of the down-sampled 4×
4 image as rotation angles 𝜃 of 16 rotation gates. The measurement
results of the last block are passed through a Softmax to output
classification probabilities. QuantumNAT overview is in Figure 3.

3.1 Post-Measurement Normalization
Measurement outcome shift due to quantum noises. Through
extensive experiments, we find that the quantum noises apply a linear
transformation to themeasurement outcome𝑦 of a QNN for the input
𝑥 . This can be formulated as 𝑓 (𝑦𝑥 ) = 𝛾𝑦𝑥 + 𝛽𝑥 , where (1) 𝛾 ∈ [−1, 1]
is an input-independent constant scaling factor, (2) 𝛽𝑥 is an input-
dependent shift. By analyzing the noise distribution, we observe that
the changes in measurement results can often be compensated by
proper post-measurement normalization across input batches. The
method is most powerful when applied on a small batch of input data
x = {𝑥1, . . . , 𝑥𝑚}. For small noises, 𝛾 is close to 1, and 𝛽𝑖 is close to
0 for all 𝑖 ∈ [𝑚]. Therefore, the distribution of noisy measurement
results undergoes a constant scaling by 𝛾 ≤ 1 and a small shift by
each 𝛽𝑖 . In the small-batch regime when 𝜷 = {𝛽1, . . . , 𝛽𝑚} has small
variance, the distribution is shifted by its mean 𝛽 = E[𝜷]. Since
the input-dependent shifts can be approximated as their average
value, i.e., 𝑓 (𝑦𝑖 ) ≈ 𝛾𝑦𝑖 + 𝛽 , our normalization method can effectively
compensate for such noise.
Post-measurement normalization. Based on the analysis above,
we propose post-measurement normalization to offset the distribution
scaling and shift. For each qubit, we collect its measurement results
on a batch of inputs, compute their mean and std., then make the
distribution of each qubit across the batch zero-centered and of unit
variance. This is performed during both training and inference. Dur-
ing training, for a batch ofmeasurement results:𝒚 = {𝑦1, . . . , 𝑦𝑚}, the
normalized results are𝑦𝑖 = (𝑦𝑖−E[𝒚])/

√︁
Var(𝒚). For noisy inference,
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Figure 3: QuantumNAT Overview. (1) Post-measurement normalization matches the distribution of measurement results between
noise-free simulation and real QC. (2) Based on realistic noise models, noise-injection inserts quantum error gates to the training
process to increase the classification margin between classes. (3) Measurement outcomes are further quantized for denoising.

Noise-Free Simulation Real Device

Batch

Q
ub

it

SNR of each measurement outcome

Measurement Outcome Distribution

Q
ub

it

Measurement Outcome Distribution

Baseline With Post-Measurement Normalization

2nd block output of a 3-block model, IBMQ-Quito
SNR of each measurement outcome

Batch

Figure 4: Post-measurement normalization reduces the dis-
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we correct the error as �𝑓 (𝑦𝑖 ) = (𝑓 (𝑦𝑖 ) − E[𝑓 (𝒚)])/
√︁
Var(𝑓 (𝒚)) =

((𝛾𝑦𝑖 + 𝛽) − (𝛾E[𝒚] + 𝛽))/
√︁
𝛾2Var(𝒚) = 𝑦𝑖 .

Figure 4 compares the noise-free measurement result distribution
of 4 qubits (blue) with their noisy counterparts (yellow) for MNIST-4.
Qualitatively, we can clearly observe that the post-measurement nor-
malization reduces the mismatch between two distributions. Quan-
titatively, we adopt signal-to-noise ratio, 𝑆𝑁𝑅 = ∥𝑨∥22/∥𝑨 − 𝑨∥22,
the inverse of relative matrix distance (RMD), as the metric. The
SNR on each qubit and each individual measurement outcome is
clearly improved. Though similar, it is different from Batch Normal-
ization [7] as the testing batch uses its own statistics instead of that
from training, and there is no trainable affine parameter.

3.2 Quantum Noise Injection
Although the normalization above mitigates error impacts, we can
still observe small discrepancies on each individual measurement
outcome, which degrade the accuracy. Therefore, to make the QNN
model robust to those errors, we propose noise injection to the train-
ing process.
Quantum error gate insertion. As introduced in Section 2, differ-
ent quantum errors can be approximated by Pauli errors via Pauli
Twirling. The effect of Pauli errors is the random insertion of Pauli X,
Y, and Z gates to the model with a probability distribution E. How to
compute E is out of the scope of this work. But fortunately, we can
directly obtain it from the realistic device noise model provided by
quantum hardware manufacturers such as IBMQ. The noise model
specifies the probability E for different gates on each qubit. For

single-qubit gates, the error gates are inserted after the original gate.
For two-qubit gates, error gates are inserted after the gate on one or
both qubits. For example, the SX gate on qubit 1 on IBMQ-Yorktown
device has E as {X: 0.00096, Y: 0.00096, Z: 0.00096, None: 0.99712}.
When ‘None’ is sampled, we will not insert any gate. The same gate
on different qubits or different hardware will have up 10× probability
difference. As in Figure 5, during training, for each QNN gate, we
sample error gates based on E and insert it after the original gate. A
new set of error gates is sampled for each training step. In reality,
the QNN is compiled to the basis gate set of the quantum hardware
(e.g., X, CNOT, RZ, CNOT, and ID) before performing gate insertion and
training. We will also scale the probability distribution by a constant
noise factor 𝑇 and scale the X, Y, Z probability by 𝑇 during sampling.
𝑇 factor explores the trade-off between adequate noise injection and
training stability. Typical 𝑇 values are in the range of [0.5, 1.5]. The
gate insertion overhead is typically less than 2%.
Readout noise injection. Obtaining classical values from qubits
is referred as readout/measurement, which is also error-prone. The
realistic noise model provides the statistical readout error in the form
of a 2× 2 matrix for each qubit. For example, the qubit 0 of IBMQ-
Santiago has readout error matrix [[0.984, 0.016], [0.022, 0.978]]
which means the probability of measuring a |0⟩ as 0 is 0.984 and
as 1 is 0.016. We emulate the readout error effect during training
by changing the measurement outcome. For instance, originally
𝑃 (0) = 0.3, 𝑃 (1) = 0.7, the noise injected version will be 𝑃 ′(0) =

0.3×0.984+0.7×0.022 = 0.31, 𝑃 ′(1) = 0.7×0.978+0.3×0.016 = 0.69.
Direct perturbation. Besides gate insertion, we also experimented
with directly perturbing measurement outcomes or rotation angles
as noise sources. For outcome perturbation, with benchmarking sam-
ples from the validation set, we obtain the error 𝐸𝑟𝑟 distribution
between the noise-free and noisy measurement results and compute
the mean 𝜇𝐸𝑟𝑟 and std 𝜎𝐸𝑟𝑟 . During training, we directly add noise
with Gaussian distribution N(𝜇𝐸𝑟𝑟 , 𝜎2𝐸𝑟𝑟 ) to the normalized mea-
surement outcomes. Similarly, for rotation angle perturbation, we
add Gaussian noise to the angles of all rotation gates in QNN and
make the effect of rotation angle Gaussian noise on measurement
outcomes similar to real QC noise. We show in Section 4 that the
gate insertion method is better than direct perturbations.

3.3 Post-Measurement Quantization
Finally, we propose post-measurement quantization on the normal-
ized results to further denoise the measurement outcomes. We first
clip the outcomes to [𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥 ], where 𝑝 are pre-defined thresh-
olds, and then perform uniform quantization. The quantized values
are later passed to the next block’s encoder. Figure 6 shows one real
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Figure 6: Left: Error maps before and after post-measurement
quantization.Most errors can be corrected.Right: 5-level quan-
tization buckets with a quadratic penalty loss.

example from Fashion-4 on IBMQ-Santiago with five quantization
levels and 𝑝𝑚𝑖𝑛 = −2, 𝑝𝑚𝑎𝑥 = 2. The left/middle matrices show
the error maps between noise-free and noisy outcomes before/after
quantization. Most errors can be corrected back to zero with few ex-
ceptions of being quantized to a wrong centroid. The MSE is reduced
from 0.235 to 0.167, and the SNR is increased from 4.256 to 6.455. We
also add a loss term | |𝑦 −𝑄 (𝑦) | |22 to the training loss, as shown on
the right side, to encourage outcomes to be near to the quantization
centroids to improve error tolerance and reduce the chance of be-
ing quantized to a wrong centroid. Besides improving robustness,
quantization also reduces the control complexity of rotation gates.

4 EXPERIMENTS
4.1 Experiment Setups
Datasets.We conduct experiments on 8 classification tasks including
MNIST [10] 10-class, 4-class (0, 1, 2, 3). and 2-class (3, 6);
Vowel 4-class (hid, hId, had, hOd); Fashion [22] 10-class, 4-class
(t-shirt/top, trouser, pullover, dress), and 2-class (dress,
shirt), and CIFAR [9] 2-class (frog, ship). MNIST, Fashion, and
CIFAR use 95% images in ‘train’ split as training set and 5% as the
validation set. Due to the limited real QC resources, we use the first
300 images of ‘test’ split as test set. Vowel-4 dataset (990 samples) is
separated to train:validation:test = 6:1:3 and test with the whole test
set. MNIST and Fashion images are center-cropped to 24 × 24; and
then down-sample to 4×4 for 2- and 4-class, and 6×6 for 10-class;
CIFAR images are converted to grayscale, center-cropped to 28×
28, and down-sampled to 4× 4. All down-samplings are performed
with average pooling. For vowel-4, we perform feature principal
component analysis (PCA) and take 10 most significant dimensions.
QNN models. QNN models for 2 and 4-class use 4 qubits; 10-class
uses 10. The first quantum block’s encoder embeds images and vowel
features. For 4 × 4 images, we use 4 qubits and 4 layers with 4 RY, 4
RX, 4 RZ, and 4 RY gates in each layer, respectively. There are in total
16 gates to encode the 16 classical values as the rotation angles. For
6× 6 images, 10 qubits and 4 layers are used with 10 RY, 10 RX, 10 RZ,
and 6 RY gates in each layer, respectively. 10 vowel features, uses 4
qubits and 3 layers with 4 RY, 4 RX, and 2 RZ gates on each layer for

encoding. For trainable quantum layers, we use U3 and CU3 layers
interleaved as in Figure 2 except for Table 2. For measurement, we
measure the expectation values on Pauli-Z basis and obtain a value
[-1, 1] from each qubit. The measurement outcome goes through post-
measurement normalization and quantization and is used as rotation
angles for RY gates in the next block’s encoder. After the last block, for
two-classifications, we sum the qubit 0 and 1, 2 and 3 measurement
outcomes, respectively, and use Softmax to get probabilities. For 4
and 10-class, Softmax is directly applied to measurement outcomes.
Quantumhardware and compiler configurations.. We use IBMQ
quantum computers via Qiskit [6] APIs. We study 6 devices, with
#qubits from 5 to 15 and Quantum Volume from 8 to 32. We also
employ Qiskit for compilation. The optimization level is set to 2 for
all experiments. All experiments run 8192 shots. The noise models
we used are off-the-shelf ones updated by IBMQ team.

4.2 Main Results
QNN results.We experiment with four different QNN architectures
on 8 tasks running on 5 quantum devices to demonstrate Quantum-
NAT’s effectiveness. For each benchmark, we experiment with noise
factor 𝑇 = {0.1, 0.5, 1, 1.5} and quantization level among {3, 4, 5, 6}
and select one out of 16 combinations with the lowest loss on the
validation set and test on the test set. Normalization and quantization
are not applied to the last block’s measurement outcomes as they
are directly used for classification. As in Table 1, QuantumNAT con-
sistently achieves the highest accuracy on 26 benchmarks. The third
bars of Athens are unavailable due to its retirement. On average,
normalization, noise injection and quantization improve accuracy
by 10%, 9%, and 3%, respectively. A larger model does not necessarily
have higher accuracy. For example, Athens’ model is 7.5× larger than
Yorktown with higher noise-free accuracy. However, due to more
errors introduced by the larger model, the real accuracy is lower.
Performance on different design spaces. In Table 2, we evaluate
QuantumNAT on different QNN design spaces. Specifically, the train-
able quantum layers in one block of ‘ZZ+RY’ [13] space contains one
layer of ZZ gate, with ring connections, and one RY layer. ‘RXYZ’ [15]
space has five layers:

√
H, RX, RY, RZ, and CZ. ‘ZX+XX’ [3] space has

two layers: ZX and XX. ‘RXYZ+U1+CU3’ [5] space, according to their
random circuit basis gate set, has 11 layers in the order of RX, S,
CNOT, RY, T, SWAP, RZ, H,

√
SWAP, U1 and CU3. We conduct experiments

on MNIST-4 and Fashion-2 on 2 devices. In 13 settings out of 16,
QuantumNAT achieves better accuracy. Thus, QuantumNAT is a
general technique agnostic to QNN model size and design space.
Scalability. When classical simulation is infeasible, we can move
the the noise-injected training to real QC using techniques such as
parameter shift [2]. In this case, the training cost is linearly scaled
with qubit number. Post-measurement normalization and quantiza-
tion are also linearly scalable because they are performed on the



Table 1: QuantumNAT consistently achieves the highest accu-
racy, with on average 22% better. ‘B’ for Block, ‘L’ for Layer.

Model Method MNIST-4 Fash.-4 Vow.-4 MNIST-2 Fash.-2 Cifar-2

2B×12L
Santiago

Baseline 0.30 0.32 0.28 0.84 0.78 0.51
+ Post Norm. 0.41 0.61 0.29 0.87 0.68 0.56
+ Gate Insert. 0.61 0.70 0.44 0.93 0.86 0.57
+ Post Quant. 0.68 0.75 0.48 0.94 0.88 0.59

2B×2L
Yorktown

Baseline 0.43 0.56 0.25 0.68 0.70 0.52
+ Post Norm. 0.57 0.60 0.38 0.86 0.72 0.56
+ Gate Insert. 0.58 0.60 0.45 0.91 0.85 0.57
+ Post Quant. 0.62 0.65 0.44 0.93 0.86 0.60

2B×6L
Belem

Baseline 0.28 0.26 0.20 0.46 0.52 0.50
+ Post Norm. 0.52 0.57 0.33 0.81 0.62 0.51
+ Gate Insert. 0.52 0.60 0.37 0.84 0.82 0.57
+ Post Quant. 0.58 0.62 0.41 0.88 0.80 0.61

3B×10L
Athens

Baseline 0.29 0.36 0.21 0.54 0.46 0.49
+ Post Norm. 0.44 0.46 0.37 0.51 0.51 0.50
+ Gate Insert. - - - - - -
+ Post Quant. 0.56 0.64 0.41 0.87 0.64 0.53

Model Method MNIST-10 Fash.-10 Avg.-All

2B×2L
Melbo.

Baseline 0.11 0.09 0.42
+ Post Norm. 0.08 0.12 0.52
+ Gate Insert. 0.25 0.24 0.61
+ Post Quant. 0.34 0.31 0.64

Table 2: Accuracy on different design spaces.

Design Space MNIST-4 Fashion-2
Yorktown Santiago Yorktown Santiago

‘ZZ+RY’ 0.43 0.57 0.80 0.91
+QuantumNAT 0.34 0.60 0.83 0.86
‘RXYZ’ 0.57 0.61 0.88 0.89
+QuantumNAT 0.61 0.70 0.92 0.91
‘ZX+XX’ 0.29 0.51 0.52 0.61
+QuantumNAT 0.38 0.64 0.52 0.89
‘RXYZ+U1+CU3’ 0.28 0.25 0.48 0.50
+QuantumNAT 0.33 0.21 0.53 0.52

Table 3: Scalable noise-aware training.

Machine Bogota Santiago Lima
Noise-unaware 0.74 0.97 0.87
QuantumNAT 0.79 0.99 0.90

Table 4: Compatible with existing noise mitigation.

Method MNIST-4 Fashion-4
Normalization only 0.78 0.81
Normalization + Extrapolation 0.81 0.83

measurement outcomes. Gradients obtained with real QC are natu-
rally noise-aware because they are directly influenced by quantum
noise. To demonstrate the practicality, we train a 2-class task with
two numbers as input features [8] (Table 3). The QNN has 2 blocks;
each with 2 RY and a CNOT gates. The noise-unaware baseline trains
the model on classical part and test on real QC. In QuantumNAT, we
train the model with parameter shift and test, both on real QC. We
consistently outperform noise-unaware baselines.
Compatibility with existing noise mitigation. QuantumNAT is
orthogonal to existing noise mitigation such as extrapolation method.
It can be combined with post-measurement normalization (Table 4).
The QNN model has 2 blocks, each with three U3+CU3 layers. For
“Normalization only", the measurement outcomes of the 3-layer block

Table 5: Post-measurement norm. improves acc. & SNR.
Quantum
Devices

↓

QNN
Models
→

2 Blocks 4 Blocks
×2 Layers ×8 Layers ×2 Layers ×4 Layers

Acc. SNR Acc. SNR Acc. SNR Acc. SNR

Santiago Baseline 0.61 6.15 0.52 1.79 0.57 6.96 0.62 4.20
+Norm 0.66 15.69 0.79 4.85 0.70 11.36 0.68 6.55

Quito Baseline 0.58 6.64 0.35 1.43 0.60 3.98 0.29 1.73
+Norm 0.66 13.92 0.71 2.98 0.74 12.26 0.72 4.54

Athens Baseline 0.59 8.91 0.60 2.14 0.63 9.52 0.55 3.54
+Norm 0.64 20.27 0.78 3.47 0.74 14.07 0.69 6.09

are normalized across the batch dimension. For “Extrapolation + Nor-
malization", we use extrapolation to estimate the standard deviation
of noise-free measurement outcomes. We firstly train the QNNmodel
to convergence and then repeat the 3 layers to 6, 9, 12 layers and
obtain four standard deviations of measurement outcomes. Then we
linearly extrapolate them to obtain noise-free std. We normalize the
measurement outcomes of the 3-layer block to make their std the
same as noise-free and then apply the proposed post-measurement
norm. Results show that the extrapolation can further improve the
QNN accuracy thus being orthogonal.

4.3 Ablation Studies
Ablation on post-measurement normalization. Table 5 com-
pares the accuracy and signal-to-noise ratio (SNR) before and after
post-measurement normalization on MNIST-4. We study 4 different
QNN architectures and evaluate on 3 devices. The normalization can
significantly and consistently increase SNR.
Ablation on different noise injection methods. Figure 7 com-
pares different noise injection methods. Gaussian noise statistics for
perturbations are obtained from error benchmarking. The left side
shows accuracy without quantization. With different noise factors
𝑇 , the gate insertion and measurement outcome perturbation have
similar accuracy, both better than rotation angle perturbation. A
possible explanation is that the rotation angle perturbation does not
consider non-rotation gates such as X and SX. The right side further
investigates the first two methods’ performance with quantization.
We set noise factor 𝑇 = 0.5 and alter quantization levels. Gate in-
sertion outperforms perturbation by 11% on average on 3 different
devices and QNN models. The reason is: directly added perturbation
on measurement outcomes can be easily canceled by quantization,
and thus it is harder for noise injection to take effect.
Noise factor and post-measurement quantization level anal-
ysis. We visualize the QNN accuracy contours on Fashion-4 on
IBMQ-Athens with different noise factors and quantization levels
in Figure 8 left. The best accuracy occurs for factor 0.2 and 5 levels.
Horizontal-wise, the accuracy first goes up and then goes down.
This is because too few quantization levels hurt the QNN model
capacity; too many levels cannot bring sufficient denoising effect.
Vertical-wise, the accuracy also goes up and then down. Reason:
when the noise is too small, the noise-injection effect is weak, thus
cannot improve the model robustness; while too large noise makes
the training process unstable and hurts accuracy.
Visualization of QNN extracted features. MNIST-2 classification
result is determined by which feature is larger between the two:
feature one is the sum of measurement outcomes of qubit 0 and 1;
feature 2 is that of qubit 2 and 3. We visualize the two features ob-
tained from experiments on Belem in a 2-D plane as in Figure 8 right.
The blue dash line is the classification boundary. The circles/stars are
samples of digit ‘3’ and ‘6’. All the baseline points (yellow) huddled



Table 2

Gate Insertion Untitled 1 Measurement 
Outcome 
Perturbation

Noise-Unaware 
Searched

Rotation Angle 
Perturbation

Random 
Generated

0.1 0.8 0.1 0.7933333333 0.0314 0.79

0.5 0.79 0.5 0.7833333333 0.0628 0.7666666667

1 0.8 1 0.7766666667 0.1 0.78

1.5 0.7766666667 1.5 0.74 0.314 0.5666666667

2 0.79 2 0.7933333333 0.5 0.51

0.628 0.47

1 0.1566666667
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2 0.1766666667
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Measurement 
Outcome 
Perturbation

Gate Insertion

3 0.4833333333 0.4966666667

4 0.49 0.61

5 0.5333333333 0.6166666667

6 0.5166666667 0.58

3 0.43 0.4133333333

4 0.4733333333 0.3733333333

5 0.3533333333 0.6166666667

6 0.2166666667 0.51

3 0.41 0.6066666667

4 0.4466666667 0.4266666667

5 0.4466666667 0.56
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Figure 7: Ablation on different noise injection methods. Left: Without quantization, gate insertion and measurement perturbation
performs similar, both better than rotation angle perturbation. Right: With quantization, gate insertion is better as perturbation
effect can be canceled by quantization.

Baseline + Post-Measurement 
Normalization

+ Noise 
Injection

Digit ‘3’
Digit ‘6’

Feature Dimension 1

Fe
at

ur
e 

Di
m

en
si

on
 2

Classification 
Boundary

2 3 4 5 6

#Quantization Level

10°2

10°1

100

101

N
oi

se
F
ac

to
r

(l
og

)

Acc.

0.00

0.30

0.40

0.50

0.60

0.70

0.75

0.78

0.800.80

0.78

0.75

0.70

0.60

0.50

0.40

0.30

0
2 3 4 5 6

Number of Quantization Levels

N
oi

se
 F

ac
to

r (
Lo

g 
S

ca
le

)

10-2

10-1

100

101

#Levels=5 
Noise Factor=0.2

Accuracy=0.8

Figure 8: Left: Accuracy contours of quantization levels and
noise factors. Right: Feature visualization.

Table 2

Norm Norm + Noise 
Injection

Norm + Quant Norm + Noise 
Injection+ Quant

MNIST-4  
Santiago

0.4133333333 0.426666666666667 0.64 0.68

Vowel-4 
Santiago

0.2931034483 0.4396551724 0.344827586206897 0.4827586207

MNIST-2 
Yorktown

0.86 0.9233333333 0.823333333333333 0.9333333333

Fashion-2 
Yorktown 

0.7233333333 0.85 0.826666666666667 0.8566666667
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0.25

0.5

0.75

1

MNIST-4  
Santiago

Vowel-4 
Santiago

MNIST-2 
Yorktown

Fashion-2 
Yorktown 

Average

0.74

0.86
0.93

0.48

0.68 0.66

0.830.82

0.34

0.64 0.66

0.85
0.92

0.440.43

0.57

0.72

0.86

0.29

0.41

Norm
Norm + Noise Injection
Norm + Quant
Norm + Noise Injection+ Quant

Combining noise 
injection & quantization 
improve accuracy

M
ea

su
re

d 
A

cc
ur

ac
y 

Figure 9: Ablation of applying noise injection and quantization
individually or jointly.

together, and all digit ‘3’ samples are misclassified. With normal-
ization (green), the distribution is significantly expanded, and the
majority of ‘3’ is correctly classified. Finally, after noise injection
(red), the margin between the two classes is further enlarged, and
the samples are farther away from the classification boundary, thus
becoming more robust.
Breakdown of accuracy gain. Figure 9 shows the performance of
only applying noise-injection, only applying quantization, and both.
Using two techniques individually can both improve accuracy by 9%.
Combining two techniques delivers better performance with a 17%
accuracy gain. This indicates the benefits of synergistically applying
three techniques in QuantumNAT.

5 CONCLUSION
PQC is a promising candidate to demonstrate practical quantum
advantages over classical approaches. The road to such advantage
relies on: (1) the discovery of novel feature embedding that encodes
classical data non-linearly, and (2) overcome the impact of quantum
noise. This work focuses on the latter and show that a noise-aware
training pipeline with post-measurement normalization, noise in-
jection, and post-measurement quantization can elevate the PQC

robustness against arbitrary, realistic quantum noises. We anticipate
such robust PQC being useful in exploring practical QC applications.
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