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ABSTRACT

Neutral atom arrays have become a promising platform for quantum
computing, especially the field programmable qubit array (FPQA)
endowed with the unique capability of atom movement. This feature
allows dynamic alterations in qubit connectivity during runtime,
which can reduce the cost of executing long-range gates and im-
prove parallelism. However, this added flexibility introduces new
challenges in circuit compilation. Inspired by the placement and
routing strategies for FPGAs, we propose to map all data qubits to
fixed atoms while utilizing movable atoms to route for 2-qubit gates
between data qubits. Coined flying ancillas, these mobile atoms func-
tion as ancilla qubits, dynamically generated and recycled during
execution. We present Q-Pilot, a scalable compiler for FPQA employ-
ing flying ancillas to maximize circuit parallelism. For two impor-
tant quantum applications, quantum simulation and the Quantum
Approximate Optimization Algorithm (QAOA), we devise domain-
specific routing strategies. In comparison to alternative technologies
such as superconducting devices or fixed atom arrays, Q-Pilot ef-
fectively harnesses the flexibility of FPQA, achieving reductions of
1.4%, 27.7%, and 6.3 in circuit depth for 100-qubit random, quantum
simulation, and QAOA circuits, respectively.

1 INTRODUCTION

Quantum computing (QC) hardware has seen rapid scaling, with
superconducting systems offering up to 433 qubits [1-4], and neutral
atom arrays reaching 1000+ qubits [5, 50]. Utilizing these machines
requires mapping qubits in a quantum program/circuit to physical
qubits on the QPU, typically constrained by limited connectivity
given by a coupling graph. For example, Fig. 1a illustrates a simple
QPU with four physical qubits connected in a ring. 2-Q entangling
gates, crucial for quantum programs, are restricted to adjacent phys-
ical qubits (e.g., (po, p1)). Consider a quantum program with gates
CZ(q0,q1), CZ(q1, g2), and CZ(q2, o). In Fig. 1b, the initial qubit map-
ping is g; +— p; for i = 0, 1, 2. While this mapping supports the first
two gates, CZ(q2, qo) involves non-adjacent py and po. Here, a SWAP
gate is inserted to route qubits, transforming the mapping. However,
SWAP is costly: it can increase circuit depth, leading to more decoher-
ence noise, and typically requires three 2-Q entangling gates, accu-
mulating gate errors. Given the current QPUs’ relatively high noise
levels, as quantum circuits grow, it becomes crucial that compilers
minimize the overheads incurred by mapping and routing to optimize
performance [7, 8, 20, 29, 42, 44, 46, 51, 56, 59, 60, 76, 77, 85, 86].

A recent breakthrough enables atom movement during quantum
circuit execution [11], profoundly impacting compilation by introduc-
ing dynamic coupling graphs for QPUs, as opposed to static configu-
rations (Fig.1). In this work, we focus on a field programmable qubit
array (FPQA) architecture that incorporates this technology. FPQA
features two atom types (Fig.2): SLM atoms (blue) are fixed atoms
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Figure 1: (a) The coupling graph of a QPU. (b) Qubit mapping
and routing. The initial mapping is annotated at the beginning
of each wire/qubit. A SWAP gate changes the mapping. (c)
Using an ancilla and two more CNOTs to implement CZ(qo, g2).
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Figure 2: Field Programmable Qubit Array (FPQA).

in traps generated by a spatial light modulator (SLM); AOD atoms
(yellow) are movable atoms in traps generated by a 2D acousto-optic
deflector (AOD). The 2D AOD, a product of two 1D AODs, allows
us to specify X coordinates for columns (yellow dashes) and Y co-
ordinates for rows. Consequently, AOD qubits move by entire rows
and columns. To avoid non-deterministic behavior from trap overlap,
we prohibit AOD rows/columns from moving over others. Physically,
atom movement is a high-fidelity operation primarily constrained by
coherence time: with only 0.1% coherence time, an atom can traverse
a region for ~ 2,000 qubits [11]. These movements are explicitly
applied for 2-Q gates, which are induced by a global Rydberg laser
activating all atoms. If two qubits are within the Rydberg radius ry,
they become ‘coupled, enabling the application of a CZ gate by the
Rydberg laser. Moving atoms between circuit stages couples different
qubit pairs, resulting in a dynamic coupling graph. To avoid unin-
tended 2-Q gates, other atoms must be sufficiently separated (> 2.5rp).
The global Rydberg laser requires less control and calibration, en-
hancing the scalability of FPQA compared to prior works [22, 55]
where the laser individually address qubits for 2-Q gates.

We introduce Q-Pilot, the first scalable FPQA router drawing
inspiration from FPGA placement and routing. Our approach, termed

“routing with flying ancillas,” involves qubit mapping akin to cell

placement and the use of movable ancilla qubits to bridge fixed atoms,
similar to FPGA routing. The advantages of flying ancillas include 1)
high-parallelism circuit execution, 2) scalable compilation, and 3) no
atom transfer required during computation. To boost parallelism and
thus reduce circuit depth, we implement a high-parallelism generic
router, dynamically arranging AODs and scheduling 2-Q gates. The
router heuristically schedules as many parallel executable gates as
possible in one laser stage up to AOD movement constraints. We
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also devise application-specific strategies: for each Pauli string in
quantum simulation, we create multiple ancillas for a “root” qubit and
employ graph algorithm to find the longest chain in the SLM array to
perform the gates; for QAOA, we create ancilla per qubit instead of
per gate, and leverage the commutation of gates to maximize parallel
execution and reduce depth. Extensive experiments demonstrate that
our FPQA compilation framework outperforms the best baseline,
achieving 1.4x%, 27.7X, and 6.7X smaller circuit depth for 100-qubit
random, quantum simulation, and QAOA circuits.

2 FLYING ANCILLAS
2.1 Motivating Example of Routing CZ

Revisiting the issue of the last gate in Fig. 1, (c) introduces an al-
ternative using ancilla qubit g4 at p3 instead of the SWAP: g4 is
initialized to |0), the three-qubit initial state (in order gogag2) can
be written as a|000) + b|001) + ¢|100) + d|101). After the first CNOT,
it becomes a|000) + b|001) + ¢|110) + d|111). After the CZ, it be-
comes a|000) + b|001) + c|110) — d|111). After the second CNOT, it is
al000) +b|001) +¢|100) —d|101), which is the same as the case where
CZ(qo, g2) acts on the initial state. In this process, g4 acts as a ‘fan-
out’ of qo. However, note that it is only on the Z basis. Hence, this
method’s effectiveness hinges on the targeted 2-Q gate, specifically
CZ in our case (and ZZ later on), but it is not universally applicable.
Thus, we decompose other 2-Q gates using CZ or ZZ beforehand.
Some previous works [21, 25] leveraged these fan-outs to reduce cost
in circuit synthesis, but we apply them in routing because uniquely
in FPQA, the fan-out qubits can move physically. If we rely on SWAPs
for the routing, the depth increases by 3 because we need 3 CNOT for
1 SWAP, yet the new approach only increases depth by 2.

2.2 General Theory of Routing CZs with Ancillas
We prove a general result independent of the coupling graph. Given
an arbitrary n-qubit state ¥ = Cy|0) + C1|1) +... + Con_1]2" — 1), and
a set of qubit pairs C, applying CZ; j» ¥(j, j') € C yields

2"-1
el [ efr=2 o [ oo
(.Jj"ec *=0  (jj)eC

where x; is the j-th bit of x. We consider an alternative proce-
dure as illustrated in Fig. 3 where we 1) apply transversal CNOTs
from the n qubits to n fresh ancillas yielding ®, 2) apply one of
the four possibilities (2 choices of whether to +n for 2 indices)
CZj(4n),j7(+n) Y(,J") € C yielding ®;, and 3) apply transversal
CNOTs again yielding ®3. We prove that 3 = ¥’ ® |0"), so our
procedure is equivalent to applying the original CZs in Eq. 1.
For every basis state |x) appended with n fresh ancillas, applying
transversal CNOTSs flips the ancilla state to |x). Thus,
n—1 2"-1
¢Fﬁmmmwmm=2mm, @
i=0 x=0
where an overhead line denotes the concatenation of bit-strings.
Then, for every pair (j, j’) € C, we apply one of the 4 possible CZs,

2"-1
@ = [ Zimyem |®r=2 ] (

(J.j")eC x=0  (jj)eC
- - 2" -1
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where we use the fact that both the j-th bit (from the left) and the
(j + n)-th bit of Xx equals the j-th bit of x, similarly for j’. Applying
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Figure 3: The general case of routing CZs with ancillas. The 3
CZs on the right can be executed simultaneously.

transversal CNOTSs, again, flips every state |xx) back to |x)|0™), i.e.,

n-1

O3 = (l_[ CNOTi,i+n) Dy =¥ ®[07), 4)
i=0

which finishes our proof.

Note that CZ gates are commutable, so the ones in Eq. 3 can be
applied in any order, which may unlock some freedom in scheduling.
Moreover, for each (j, j’) € C, we have 4 possible CZs to use in Eq. 3
and many of them can be parallelized. For example, in Fig. 3, n = 3,
and the original CZs are C = {(0, 1), (1, 2), (2,0)} which takes at least
3 steps. Using the procedure just presented, the CZs on (0 + n, 1),
(14 mn,2), (2+n,0) can be scheduled to just one step.

2.3 Flying Ancillas in FPQA

The flying ancillas scheme proves particularly advantageous for
FPQA over other QC platforms, owing to its high-fidelity move-
ments. The most similar setting is in a multi-chain ion trap QPU [6],
where chains of ions are laid out in 1D, and two chains can be moved
to merge or split again. However, because there is no distinction be-
tween stationary and movable qubits like in FPQA, moving a regular
qubit in the ion trap quantum computer has the same cost as moving
an ancilla, so the flying ancilla scheme does not hold a big advantage.
Additionally, the limited number of qubits available on ion trap QPUs
discourages leveraging numerous ancillas. Flying qubits, typically
optical, are also employed as communication resources between in-
dividual superconducting QPUs but face challenges, including a low
interfacing fidelity of approximately 80% per flying qubit [41]. In
contrast, in FPQA, the two extra CNOTs required by flying ancilla
can achieve 99.5% fidelity, and the ancilla movement has negligi-
ble error [19]. Despite this high fidelity, the state-of-the-art FPQA
compilation work [61] primarily utilizes only the movement of data
qubits for routing, overlooking the potential advantages of routing
via flying ancillas.

3 ROUTING FRAMEWORK

3.1 Overview

Given a target problem, the input values to the router are (1) the
SLM array parameters (#rows, #columns, and locations), (2) the AOD
array parameters (#rows and #columns), and (3) the qubit mapping.
We focus on routing in this work, so we simply map qubits in reading
order throughout. We refer to them as configurations of the FPQA.
Based on a configuration and the target problem, we leverage a
high-parallelism router to generate an optimized schedule. A fast
performance evaluator can efficiently return the corresponding per-
formance metric or cost, including the number of 1-Q gates, 2-Q
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Figure 4: The flowchart of the FPQA compilation framework.

Algorithm 1: Generic router for arbitrary quantum circuits

Input :Gates G in a quantum circuit
s « 0; Initial schedule;
g < G; Initial gate candidates;
i 0;
while g # 0 do
pi = FrontLayer(g);
qi =0;
for p € p; do
if IsLegal(q; U p) then
gi < qi Y p;
g—g\p
end
end
s « s U GenerateSchedule(q;);
ie—i+1;

end
Output:Schedule s with maximum depth i

gates, the circuit depth, and movement distance, which are closely
related to the circuit fidelity.

With this performance evaluator, our compiler also supports
router-in-the-loop FPQA architecture design space exploration. We
can use the evaluated cost as feedback to optimize a configuration
that targets higher circuit fidelity iteratively. After certain epochs, the
compiler will output the best configuration and optimized schedule.

3.2 Compilation of General Quantum Circuit

The compilation process is shown in Fig. 4. Given a quantum circuit,
we first decompose the target circuit into 1-Q rotations and 2-Q
CZ gates. Then, the gates are performed in alternating 1-Q and 2-
Q stages. In the 1-Q stages, we turn on the individual addressable
Raman laser to perform the desired gates on the target qubits. After
all the available 1-Q gates are done, we move to 2-Q stages. In such
stages, we select a set of CZ gates from the non-dependent front-layer
of the circuit that can be performed in parallel. Then, we create flying
ancillas from the control qubits and move the ancillas close to their
corresponding target qubits. We turn on the Rydberg laser so that
the ancillas will perform CZ gates with the target qubits. At last, we
recycle these ancillas with CNOT gates and repeat this process. After
all gates are done, we perform measurements and get results.

We first introduce the generic router for arbitrary quantum circuits.
We first transpile a given circuit with the universal gate set: CZ+1Q
gates. Then, we iteratively extract the front layer of that circuit. If
the front layer contains 1Q gates, we perform the 1Q gates first. After
that, the front layer contains only a set of CZ gates.

To maximize the parallelism of the generated schedule while main-
taining good scalability, we propose a heuristic-based scheduler that
selects as many CZ gates as possible while honoring the constraint
of FPQA in a single 2-Q gate stage described in Alg. 1. We show
an example in Fig. 5. Given a quantum circuit, we first detect the
source layer of the dependency graph according to the gate depen-
dency, defined as the maximum potentially parallelizable gates, e.g.,
(g0, 91, 92, 93). From the i-th source layer, we use a greedy algorithm
to decide (1) the maximum legal subset of the source layer gates and
(2) the grid locations of the AOD ancilla qubits. The key intuition
behind this greedy heuristic is that the order of rows and columns
cannot be reversed. We first sort the candidate gates by the index of
the first qubit in the gate. In the first search step, the router adds go
and g; to the subset and checks the legality according to the qubit
ordering in rows and columns. Since the row/column order of go and
g1 all satisfies go <= g1, this is confirmed to be a legal subset. Then,
in the next step, the router tries to add g to the subset. However,
in the column dimension, the 1st qubit is of order gy <= g1 <= go,
which conflicts with the 2nd qubit order go <= go <= g1. In other
words, it is impossible to move AOD ancilla qubits to enable parallel
execution of those three gates. This violation of the order rule will
kick gate g2 out of the legal subset. Similarly, the router adds g3 into
the subset and ultimately finds the maximum legal subset (go, g1, 93)
and the corresponding grid locations of three AOD ancilla qubits,
ie., (0,0), (1,1), and (2,2). This is the end of the sub-schedule for the
i-th stage. To physically execute this i-th sub-schedule, we perform
a three-phase operation: (1) move the AOD ancilla qubits near the
target SLM qubits and copy their states via CNOTSs; (2) move the ancilla
qubits to the target qubits to parallel execute the gates in the legal
subset; and (3) finally recycle the states from ancilla qubits to the
original SLM qubits via CNOTs. After performing a set of 2-Q gates,
the router will repeat the process on the next source layer of the
circuit g4, gs, g2, g. The router will repeat this legal subset selection
process on the remaining gates until all gates are executed in the
schedule and ultimately output the complete schedule.

Note that the AOD configuration between two iterations can be
different. For our example, the ancillas live on different crosses. This
can be achieved by transferring a set of spare SLM atoms to arbitrary
rows and columns on the AOD grid. The atom loss is not fatal in



Algorithm 2: Customized router for quantum simulation

Data: List P: qubits in the Pauli string with non-I paulis
s « 0; Schedule for the compiled program
P « P\ P[0]; P[0] is the root qubit
g < 0; Directed compatibility graph. Two qubits
are compatible if and only if there is a path between them.
for q; € P do
L g.nodes « g.nodes U q;;

for g; € P do

for q; € P\ gq; do

if gj.row >= gj.row & gj.col >= g;.col then
L g.edges < g.edges U (qi, q;);

while g # 0 do

Find the longest path [ in g;

s « s U GenerateSchedule(l);
L g—g\{nlnel}
Result: Schedule s

our scheme because they do not contain any quantum information
during transfer.

3.3 Customized Router for Quantum Simulation

For specific applications, we propose domain-specific routing strate-
gies for higher parallelism. The first application is quantum simu-
lation. To simulate the evolution under a Pauli string, the core part
of the simulation algorithm works as follows: First, select a starting
qubit inside the given Pauli string and then perform CNOTs on all
pairs between the starting one and other qubits in the string.

We propose a longest path-based algorithm to compile this prob-
lem on the FPQA, described in Alg. 2. We configure the AOD array
so that all ancilla qubits are on the diagonal of the grid and can be
moved with the best flexibility. Then, we select the qubit i with the
smallest index and fan-out its state to all AOD ancilla qubits. To
maximize the parallelism, we need to find the longest legal path in
the directed dependency graph, where each qubit points to all other
qubits in its lower-right corner, as shown in Fig. 6.

Given this longest path, we move the AOD ancilla qubits to their
target SLM qubits and perform CNOTs in parallel. Further, those exe-
cuted qubits will be removed from the candidate set, and the longest
path-finding procedure will repeat until all gates are executed. Note
that this longest path-finding can be implemented efficiently with
dynamic programming. Compared to the generic router, which ap-
plies atom transfer to create and recycle ancilla qubits at each stage,
this specialized quantum simulation router will maintain the states
on the ancilla qubits across stages for one Pauli string, thus having
a lower overhead. To generate N fan-out qubits for N non-identity
Pauli operators in a string, we initiate a fan-out operation by relo-
cating the root SLM qubit near the target and executing a CNOT gate,
as indicated by the underline X below. Additional fan-out qubits can
be generated by performing CNOToperations with adjacent qubits.
This leads to a geometric progression in the number of new fan-out
qubits—1, 2, 4, 6, 8, etc.—yielding a circuit depth of O(\/N).

3.4 Customized Router for QAOA

Another task that can be highly parallel is Quantum Approximate
Optimization Algorithm (QAOA). In QAOA, we are given a graph,
and our target is to perform 2-Q gates on every edge in the graph
shown in Fig. 7.
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Algorithm 3: QAOA compilation with flying ancilla and
high-parallelism router

Input: edges: List[(q1,q2)] is a list of edges

Program: an empty quantum program

while edges is not empty do

cancel_pairs_first_row=(]

Find e0 in edges with smallest e0.q1.

cancel_pairs_{first_row.append(e0)

Program.cancel(e0)

while True do

Find e in edges with smallest e[0], which is
compatible and e.ql.y=e0.ql.y.

if can’t find then

L Break
cancel_pairs_first_row.append(e)
Program.cancel(e)

fori=1..nrowi =i..n_rowdo
match=True
for e in cancel_pairs_first_row do
replace e.ql.y with i, replace e.q2.y with i’
if e not in edges then
L match=False
if match then
for e in cancel_pairs_first_row do
replace e.ql.y with i, replace e.q2.y with i’
L Program.cancel(e)

O:ltpllt: Compiled Program

First, we create one ancilla for each qubit. These ancillas will be
recycled once the whole graph is done. Then, our router completes
this task in a multi-stage way. Each stage will perform one or multiple
2-Q gates corresponding to some edges in the graph. We illustrate
the detailed procedure of the first stage in Fig. 7. Among all the qubit
pairs, we select the one with the smallest index as the highest-priority
pair to begin with, e.g., (0°,1). Since each AOD row and column must
move simultaneously, we check which pair can be performed inside
the same row, e.g., (1’,3) is matched in this case. The rest of the AOD
columns have already moved outside the SLM array. Then, they will
not interact with any SLM atoms. Once the locations of all ancilla
qubits in the first row are determined, other ancilla qubits on the
rest of the rows can only move vertically due to the grid constraint.
Then, we need to determine the vertical location of each row one by
one. For the second AOD row, we found the best vertical location
that can allow the most pairs to interact, e.g., in this case, we match
two pairs (4°,9) and (5°,11). Note that any undesired interaction is
illegal and thus should be avoided. This process will repeat until
no rows can legally interact with any SLM atoms. Then, we can
determine the locations of all AOD qubits and turn on the Rydberg
laser to perform the parallel 2-Q gates. This greedy algorithm, details
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Figure 6: Q-Pilot routing quantum simulation circuits.

in Alg. 3, always tries to achieve the maximum matching on the first
row and ultimately reaches a schedule with max parallelism.

So far, we have finished the first stage of the schedule with four Figure 7: Scheduling of a QAOA circuit using Q-Pilot. The
2-Q gates being performed. In the second stage, the highest-priority graph representation of the circuit is shown on the left. The
pair now becomes (0’,2), and the same procedure as stage one can edges correspond to interactions between two qubits.

be applied to find a legal schedule with maximal parallelism. After
t stages, the compilation flow ends with a t-stage legal schedule

where all 2-Q gates are performed. Lastly, we recycle the ancillas optimization for parallel gate execution. The figure also includes his-
and complete the task. tograms detailing the frequency of movements, distances traversed,
Fig.9 depicts the spatiotemporal dynamics of a 100-qubit QAOA and average speeds. Based on realistic parameters from [11], the

circuit, revealing a periodic pattern in atom positions due to iterative typical speed is measured at 0.15 m/s. Fig. 10 shows the execution
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Figure 9: Movement spatiotemporal patterns.

timeline of a program compiled with the FPQA where movements
are the largest part.

4 EVALUATION
4.1 Evaluation Methodology

Benchmarks. We utilize three benchmark types: random, quantum
simulation, and QAOA circuits. Benchmarks were created for 5, 10,
20, 50, and 100 qubits. Random circuits were generated with Qiskit’s
random_circuit function, which randomly places 1-Q and 2-Q gates
on qubits. The number of CNOT gates is set at 2x, 5x, 10x, 20x, and
50x the qubit count. Quantum simulation circuits were formed from
100 random Pauli strings. The probability p of a qubit having a Pauli
operator X, Y, or Z varies from 0.1 to 0.5. QAOA circuits were con-
structed using ZZ gates between random qubit pairs. These pairs had
an edge probability p of 0.1 to 0.5. We also designed specific QAOA
circuits based on 3-regular and 4-regular graphs. These circuits also
used 5, 10, 20, 50, and 100 qubits.

Baselines. 3 devices as baselines were chosen: the 127-qubit IBM
Washington machine, a 16x16 square lattice, and a 16X16 triangular
lattice of fixed neutral atoms, following Ref. [61]. The IBM machine
features a heavy hexagon coupling graph. The square lattice’s atoms
connect to four nearest neighbors, while the triangular lattice’s atoms
connect to six. Qiskit’s transpiler compiled benchmark circuits onto
these devices at optimization level 3. Circuit depth, defined as the
number of parallel 2-Q gate layers, was a key comparison metric,
alongside the number of 2-Q gates in each compiled circuit for the
baseline devices and Q-Pilot. Additionally, Q-Pilot was benchmarked
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Figure 10: Detailed execution of compiled program.
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Figure 11: Comparison of compiled 2-Q gate count and circuit
depth between Q-Pilot and the three baselines on random
circuits. The random circuits vary in size, from 5-Q to 100-Q,
and have 2-Q gate count between 2X and 10X qubit count.

against the solver-based compiler from Ref. [61], used for QAOA
problems on 3- and 4-regular graphs. Comparisons included circuit
depths and compilation times, with a 4,000s timeout (~an hour) set
for the solver-based compiler due to its exponential runtime scaling.

4.2 Main Results

Results on random circuits. Fig. 11 shows the results of compiling
random circuits. Compared with three baseline devices, for 100 qubits
Q-Pilot shows an average of 4.2X reduction in the compiled 2-Q gate
count, as well as an average of 1.4x reduction in compiled circuit
depth compared with the best-performing baseline approach.
Results on quantum simulation circuits. Fig. 12 shows the results
of compiling quantum simulation circuits. For Pauli probabilities 50%,
Q-Pilot shows an average of 6.9 reduction in the compiled 2-Q gate
count and an average of 27.7x reduction in compiled circuit depth
compared with the best-performing baseline on 100-qubit circuits
compared with the best baseline. Besides the random Pauli strings,
we also test with the Pauli strings used in some molecule simulation
problems [30]. As shown in Table 1, Q-Pilot shows an average 1.36x
reduction in the 2-Q gate count and average 2.60X circuit depth
reduction over the best baseline.

Results on QAOA circuits. Fig. 13 shows the results of compiling
Max-Cut QAOA circuits for 4-regular graphs and random graphs
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Figure 12: Comparison of compiled 2-Q gate count and circuit
depth between Q-Pilot and the three baselines on quantum
simulation circuits from 5-Q to 100-Q. The circuits are gener-
ated with Pauli probability p = 0.1 and 0.5.

Table 1: Quantum Simulation for Molecule Pauli strings.

Benchmark Device H2 LiH_UCCSD H20 BeH2
FAA(rectangular) 76 2,772 31,087 43,919

Depth FAA(triangular) 61 2,052 26,189 37,314
P Superconducting 77 3,403 40,080 59,259
Ours 61 849 7,585 10,617
FAA(rectangular) 82 3,577 41,306 58,720

FAA(triangular) 73 2,616 35,353 51,699
#2Q Gate Superconducting 85 5,082 67,247 103,594
Ours 94 2,130 20,966 29,518

with edge occupancy 30%. Q-Pilot again shows an average of 10.0X re-
duction in compiled 2-Q gate count and an average of 6.7x reduction
in the compiled circuit depth.

Comparison with the Solver-Based Compiler. As illustrated in
Table 2, we compare Q-Pilot against the solver-based methods [61, 62]
in compiling QAOA circuits for regular graphs. Ref. [62] relaxes the
formulation of Ref. [61] to tradeoff compilation time and quality.
While the these method achieve better solutions, they struggles with
larger problems, often failing to find a solution within an hour due
to its exponential runtime scaling. In contrast, Q-Pilot efficiently
compiles all these problems in under 1 second, with the compiled
circuit depth not exceeding 4x the optimal depth.

4.3 Analysis

Impact of Array Size on Circuit Depth. Fig. 14 shows how array
sizes affect the compiled circuit depth. We organized the qubits
into rectangular arrays of varying widths (8, 16,32, 64, 128), with
the optimal array widths marked by stars in the figure. Optimal
array widths vary across different problems, highlighting a tradeoff
between greater parallelism within a row and across different rows.
Specifically, in Fig. 14, we observe that QAOA circuits achieve optimal
performance with large array width (128), while random circuits and
quantum simulation problems are best served with moderate array
widths (64 or 32 in our study). The insight here is while larger array
widths offer more parallel execution paths, they might not always
correspond to increased efficiency for all types of problems, possibly
due to overheads or specific characteristics of the circuit structure.

How does the 2-Q gate error rate affect the overall error rate?
Fig. 15 (a) shows the relation between the overall error rate and the
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Figure 13: Comparison of compiled 2-Q gate count and circuit
depth between Q-Pilot and the three baselines on QAOA cir-
cuits. The QAOA circuits vary in size, from 6-Q to 100-Q, and
are generated with edge p = 0.3 and 4-regular graphs.

Table 2: Comparison of Q-Pilot with solver based method.

Benchmark 6Q 10Q 20Q 50Q 100Q
runtime(s) solver [61] 0.173  0.381 74.5  timeout timeout
3re iter-p [62]  0.509 2.16 14.6 966  timeout
& Ours 5.57E-3 9.89E-3 1.07E-2 7.52E-2 1.77E-1
solver [61] 3 3 3 - -
depth iter-p [62] 3 5 6 10 -
Ours 5 7 11 24 45
runtime(s) solver [61]  18.1  3.93E3 timeout timeout timeout
dre iter-p [62]  0.852 2.64 234 2.34E3  timeout
& Ours 6.25E-3 9.31E-3 2.10E-2 7.23E-2 3.42E-1
solver [61] 5 5 - - -
depth iter-p [62] 5 6 8 15 -
Ours 6 9 15 32 60

2-Q gate error rate. We model the circuit error with the equation
introduced [61], where € is the overall error rate:

e=1 _f‘zNTflcl exp (_NZTT;Z\/E) R (5)

N is the maximum number of qubits used (including AOD and SLM),
and T is the circuit depth. Gy is the number of 1-Q gates. fi and f are
the fidelity of 1-Q and 2-Q gates, respectively. T5 is the coherence time
of the qubit, and Ty is the characteristic time of atom movement. D;
is the maximum distance atoms moved in stage i. In our estimation,
we choose fi = 99.9%, T» = 1.5s, and Ty = 300pus [61]. The three
benchmarks used here are 1) quantum simulation circuits with 5
qubits and 100 non-trivial Pauli strings with p = 0.1, 2) random 5Q
circuits with an average of two 2-Q gates per qubit, and 3) QAOA
circuits for random 3-regular graphs. The error rates are below 0.5
when the 2-Q gate has an error rate below 1073.

What is the distribution of the parallelism? Fig. 15 (b) shows
the percentage of stages with the number of 2-Q gates simultane-
ously executed for QAOA problems. The average parallelism of 200Q,
50Q, and 100Q problems are 3.32, 4.13, and 4.90, respectively. As the
problem scales up, the parallelism of the problem is also increased.

Whether the application-specific compilers bring better perfor-
mance for quantum simulation and QAOA? Fig. 16 shows the
advantage of the domain-specific compiler compared to the general
compiler. For quantum simulation, the domain-specific compiler re-
duces the 2-Q gate count by 1.5X and the circuit depth by 8.8x. For
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Figure 15: (a) Overall error rate vs. 2-Q gate error rate for ran-
dom 6Q circuits with two 2Q gates per qubit, QAOA circuits
based on random 3-regular graphs, and 5Q quantum simula-
tion circuits with 100 Pauli strings and p = 0.1. (b) Ratio of
total stages vs number of parallel 2-Q gates in a stage using
Q-Pilot on QAOA circuits with 20-Q, 50-Q, and 100-Q.

QAOA, the domain-specific compiler reduces the 2-Q gate count
by 2.8x and the circuit depth by 10.1x. The advantages come from
domain-specific heuristics that minimize the circuit depth.

How scalable is the Q-Pilot? We test Q-Pilot with a large number
of qubits to show its scalability. For the QAOA problem, we choose
random graphs with edge p = 0.5. It takes 1.51s, 10.75s, and 129.50s to
compile 500, 1000, and 2000 qubits. For quantum simulation problems,
we choose 100 random Pauli strings. It takes 6.91s, 14.28s, and 30.48s
to compile 500, 1000, and 2000 qubits. We generate random circuits
with a depth of 10 for general circuits, and it takes 2.64s, 8.70s, and
32.31s to compile 500, 1000, and 2000 qubits. The fast speed proves
that Q-Pilot is scalable and can handle large-scale problems.

5 RELATED WORKS

Compilers for Neutral Atom Arrays. Previously, research fo-
cused on fixed atom arrays with static coupling. Ref. [9] introduced
the first compiler framework for this architecture, extending exist-
ing techniques for superconducting devices and addressing unique
constraints, including long-range interaction restriction zones and
sporadic atom loss. Ref. [32] further considers gate durations in
compilation. Geyser (Ref. [52]) leverages native 3-Q operations by
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Figure 16: Advantage of our application specific Quantum
Simulation and QAOA router comparing to the generic router.

blocking 3-Q sub-circuits and re-synthesizing them. A concurrent
work FPQA-C [74] proposed a MAX k-Cut-based algorithm to per-
form qubit mapping and developed a router to schedule the gates.
It does not leverage any ancilla qubits and thus is sub-optimal on
circuit depth.

Ref. [12] first considered atom movement, exploring a hypotheti-
cal architecture with ‘1D displacement’ reconfigurability, more re-
strictive than FPQA. Ref. [61] presented the initial FPQA compiler,
formulating constraints and using an SMT solver for qubit mapping
and routing. However, the solver-based method’s scalability is limited
by the exponential SMT solving. Their updated work [62], sacrificing
some optimality for scalability, still struggles to handle a 100-qubit
circuit within a day. Additionally, it is worth noting that they employ
atom transfer operations, moving an AOD atom to an empty SLM
trap when in proximity and vice versa. While atom transfer is already
utilized in experiments [18], frequent transfers ‘heat up’ the atoms,
potentially resulting in atom loss errors.

Compilers for Emerging Quantum Architectures. Supercon-
ducting quantum computers have been widely used in quantum
computing research. However, there has been a growing interest in
exploring alternative quantum computing hardware, such as neutral
atom machines and trapped ion machines. Our work delves into the
compiler design for neutral atom systems, building upon insights
from previous works [9, 52, 61]. Furthermore, we have observed a
surge in compiler designs tailored for trapped ion systems in re-
cent years. Notable among these are TILT [78], designed for linear
chain trapped ion systems; compilers for Quantum Charge Coupled
Device-based trapped ion architectures as discussed in Ref.[48]; and
compilers for shuttling-based trapped ion architectures as explored in
Ref.[26]. Additionally, a variety of compilation techniques applicable
to diverse quantum computing settings have been proposed [10, 13-
17, 23, 24, 27, 28, 30, 37, 39, 40, 43, 45, 47, 49, 53, 54, 63-67, 78-81]. In
this work, we target an emerging FPQA (Field Programmable Quan-
tum Array) device implemented with dynamically reconfigurable
atom arrays. Given the dynamic nature of the coupling map in such
devices, traditional compiler techniques cannot be directly applied.
To address this challenge, we introduce a novel flying ancilla-based
compilation framework. This framework is designed to generate
low-depth compiled circuits that maintain high scalability, catering
specifically to the unique arch