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Background and Motivation

Search for Robust Quantum Circuit & Qubit Mapping

Large gap due to 
gate errors

• Example Quantum Neural Networks architecture for image classification
• Contains encoder, trainable quantum layers, measurement

TorchQuantum – A library for fast 
Quantum+ML on GPUs• Quantum Computer can potentially provide exponential speedup on

problems such as quantum machine learning and molecular dynamics
• However, the current bottleneck is the large quantum noise which severely

degrades the reliability of computed results
• Our core contribution is a framework to search for the most noise-robust

circuit and corresponding qubit mapping for parameterized quantum circuits
• Demonstrate over 95% 2-class, and 32% 10-class image classification

accuracy on real quantum computers; more accurate eigenvalue for VQE
tasks on H2, H2O, LiH, CH4, BeH2 compared with UCCSD baselines

• A large gap between noise-free simulation and real deployment due
to quantum noises (errors)
• More parameters increase the noise-free accuracy but degrade

measured accuracy
• Quantum noises exacerbate the performance variance

• Step 1: Given a circuit design space, a ‘SuperCircuit’ is constructed as the
largest possible circuit. The parameters of it are trained by iteratively
sampling and updating a subset of parameters (‘SubCircuit’)
• Step 2: Perform an evolutionary search with real hardware feedback to

find the most robust model architecture and its qubit mapping
• Step 3: Train the search architecture from-scratch
• Step 4: Perform magnitude-based fine-grained pruning of quantum

gates. Gates with small rotation angles will be removed
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Results

• Easy construction of parameterized quantum circuits such as
Quantum Neural Networks in PyTorch
• Support batch mode inference and training on GPU/CPU, supports

highly-parallelized parameter shift and back-propagation training
• Support both static and dynamic computation graph for easy

debugging (statevector simulation & tensor network simulation)
• Support easy deployment on real quantum devices such as IBMQ
• Provide tutorials, videos and example projects of QML and using ML

to optimize quantum computer system problems.
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